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RADIATION ANOMALIES ON THE LUNAR SURFACE

I)avid Buhl

ABSTRACT

A model of the Moon, which consists of a large number of centi-

meter and millimeter size craters distributed over the surface, is pro-

posed to account for several of the anomalous results of infrared obser-

vations. These observations have shown that the temperature of the

subsolar point depends on the angle of'observation. In addition, thermal

hot spots appear during a lunar eclipse. Such anomalous observations

are interpreted as indicating the presence of small craters.

In calculating the effect of small scale cratering on observations

of the illuminated and eclipsed Moon, a number of physical processes

are considered. A detailed calculation of the effect of radiation inter-

change within the crater is made. Curves are plotted of the infrared

brightness of the illuminated crater as a function of the angle of the

observer, taking into account the effects of reradiation,i local incidence

and emission angles, and shadowing. These curves are shown to be

similar to those observed for the Moon. By interpreting the anomalous

radiation curves as being the result of small craters a relative crater

density of 0.3 and a depth to diameter ratio of approximately 0.5 are

obtained for the millimeter scale cratering and roughness on lunar surface.

A calculation is also made of the cooling curves for a crater both during

an eclipse and during the lunar night. The effects of reradiation within

the crater and excavation of heat from the deeper layers are shown to

produce an anomalous cooling curve. For example an area which is

covered with craters whose depth to diameter ratio is 2.0 will be 70 ° K

warmer than a smooth area during an eclipse. From this it is suggested

that centimeter scale craters rna 7 be responsible for the observed thermal



anomalies. Several measurements are suggested which would provide

more information on the small scale craters. These measurements

would also help to eliminate some of the models which have been sug-

gested to explain the thermal anomalies.
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I. INTRODUCTION

Photographs and visual observations of the Moon provide

much material for speculation about the history of the lunar

surface. However, even with the success of orbiting and landing

satellites many questions remain to be answered. The resolution

of photographs taken with Earth-based telescopes is of the order

of a kilometer. Recent satellite pictures that have been transmitted

to Earth represent an enormous improvement over telescope

photographs; for example, the approximate resolutions for three

of the U. S. satellites are: Orbiter {I00 m), Ranger (I m),

Surveyor (I mm). The most striking feature of the Moon's

surface as seen in these photographs is the large number of craters

on the lunar landscape. This is particularly evident in the pictures

taken by the Orbiter satellite. There is some debate about whether

these craters are of volcanic or meteorite origin; nevertheless,

the evidence from studies of dimensions of the craters strongly

suggests that most of the craters have been created by meteorite

impacts with the surface (Baldwin 1963). The biggest craters have

diameters exceeding I00 km and depths less than 5 kin, making them

relatively shallow. In many of these craters there appears to have

been some filling due to erosion processes (Jaffe 1966). Even the

immense dark maria regions are thought to have been large crater

basins that were subsequently filled by lava (Baldwin 1963). As an

alternative hypothesis, Gold (1955) suggested that the maria are

enormous dust flows whose depth might be as much as 300 feet.

Recent high-resolution photographs in the region of Flamsteed,
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where the Surveyor landed, suggest a fine particle surface that

is weakly cohesive; however, little is known about the subsurface.

The presence of dust and the possibility of volcanoes on the lunar

surface are just two of many problems that have not yet been re-

solved by recent photographs.

Several statistical studies of lunar craters have been made

using lunar photographs. One of the most comprehensive was a

study by Baldwin (1963) of the depth, diameter, and rim height of

lunar and terrestrial craters. He was able to show that the

relationship between depth and diameter for lunar craters is

very similar to that for meteorite and explosion craters on Earth.

Subsequently, he found that a slight modification was needed in the

relationship in order to fit the data on the smaller craters shown in

the Ranger photographs (Baldwin 1965). As one goes to smaller and

smaller craters the depth-to-diameter ratio increases and the flat

bottom shape of the larger craters gives way to a spherical shape

(Fig. X). In addition, the number of craters increases at a rate

greater than one over the square of the diameter, so that the

percentage of the area of the Moon covered by the craters increases

as the crater diameter decreases (Brinkmann 1966). An indirect

way of obtaining the possible distribution of crater sizes on the

Moon is to do a count of meteorite falls on the Earth. Brown (1960)

has shown that the number of meteorites increases very rapidly

as the mass decreases. Baldwin (1963) has used these statistics,

along with his own studies of the relationship of the mass of the

meteorite to the diameter of the crater produced, to derive the

distribution of crater diameters. Such a distribution predicts a very



large number of small micrometeorite craters. If such craters

exist, many of them must be beyond the present limits of resolu-

tion, even for the Ranger and Surveyor satellites. Detecting such

small craters and roughness requires a more indirect approach.

A number of investigators have made observations of the

intensity of visible light reflected from the lunar surface

(Minnaert 1961). In one study the intensity as a function of the angle

of reflection was measured by observation of various regions that

have the same solar angle of incidence (Fig. 3). In another observa-

tion the reflected intensity as a function of the angle of incidence for

a single region was observed (Sitinskaja and Sharanov 1952).

These measurements of the photometric function show that the

reflected intensity is sharply peaked in the direction of illumination.

Theoretical and laboratory studies of reflection from various

surfaces indicate that very complicated structures are required

to produce this strong backscattering (Hapke 1963, Warren 1963,

Van Diggelen 1960).

In explaining these structures one must consider the extreme en-

vironmental conditions on the Moon. Because the Moon lacks an atmo-

sphere, its surface is subjected to intense ultraviolet radiation from the

Sun and continual bombardment by micrometeorites and solar wind

particles. Several suggestions have been made as to how such

processes could produce the structuring of the surface needed to

explain the photometric function. These include: impact melting

and cooling,

outgassing,

dust grains.

solar wind sputtering, porosity caused by volcanic

or "fairy castles" built by electrostatic forces between

Most of these mechanisms produce a very complex
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geometrical structure whose dimensions are on the order of a few

microns. Because of the small size, we will refer to the scale of

these structures as being microscopic. Their complex geometry

causes shadowing that results in a reflection characteristic similar

to that of the lunar surface. The results of observations of the

percent polarization of the reflected sunlight and studies of the Bond

albedo of the lunar surface are also an indication of roughness.

Thus the visual reflection data on the Moon can be interpreted as

the result of an extremely rough surface on a microscopic scale.

One very important area of lunar research was begun in the

1920's when Pettit and Nicholson first made measurements of the

infrared emission from the surface. Their measurements were made

in the 8 -- 12 micron telluric window using a thermocouple detector

and a filter consisting of a glass slide and water cell. The infrared

radiation from the lunar disc is approximately given by the difference

between the readings taken with and without the filter. The equipment

was mounted at the focus of the Mt. Wilson I00" telescope and used

to detect the thermal emission from the surface during the night

and eclipse periods, as well as from the illuminated Moon. In one

of the observations Pettit and Nicholson (1930) measured the emission

from the subsolar point as a function of the angle of the observer

with respect to the surface normal (or direction of incidence). The

intensity they measured showed a sharp drop at large observing

angles. The observation was subsequently repeated by Sinton (1962),

who obtained essentially the same result (Fig. 9a). Pettit and

Nicholson also observed the intensity of emission of the full Moon

from the center out to the limb. Instead of the expected cosine



variation that would be predicted for a smooth lambert sphere,

they found (cos e) _ for the variation in brightness (Fig. 9b).

Pettit and Nicholson made a calculation of a roughness model

composed of spheres that gave results somewhat similar to the full

Moon data. Another model that consists of rectangular corrugations

has been recently proposed by Gear and Bastin (1962), but no

calculations were made. The interpretations of the Pettit and

Nicholson data have generally involved a qualitative discussion

of roughness, but no thorough study of theoretical models has

been done as in the case of the photometric data. As a result

of their detailed consideration of the absolute calibration of the

equipment, they were able to obtain a maximum apparent tempera-

ture of 407°K for the subsolar point. Pettit and Nicholson then

used their data on the emission from the subsolar point to calculate

a temperature of 391° K corresponding to the mean spherical

intensity. Later measurements indicate about 389 ° K (Sinton

1962). Such high values indicate that the subsolar point tempera-

ture is determined by a simple balance of absorbed solar radiation

and thermal emission. However, any interpretation of the radiation

emitted from the subsolar point in terms of a temperature for the

Moon should take into account the angular dependence of the emission

characteristics observed by Pettit and Nicholson.

Observations of the infrared emission from the Moon's

.surface were also made during the lunar night and during an

eclipse. Pettit and Nicholson made an attempt to measure the

midnight temperature of the Moon and obtained an upper limit of

120 ° K. As the sensitivity of infrared detectors has improved it
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has become possible to actually measure the nighttime emission

from the lunar surface. Murray and Wildey (1964) have observed

the cooling of the Moon at night by making scans across the terminator.

These showed an upper limit to the midnight temperature of about

105° K. Subsequent measurements by Low (1966) indicate tempera-

tures that are less than 70° K. This is an extremely low tempera-

ture, considering that the subsolar point temperature is about

390° K, and it shows that the lunar surface is a very good insulator.

Another important observation that Pettit and Nicholson made was to

record the surface temperature during the lunar eclipse of June 14,

1927. As the Earth's shadow passed over the lunar disc, they

found that the surface cooled very rapidly to around 180° K and

continued to decrease slowly during the totality, which lasted for about

Z. 5 hours. This demonstrates that the Moon is a good insulator for

both transient and long period changes in the solar flux.

It was over 20 years after Pettit and Nicholson observed the

temperature variation during a lunar eclipse that Wesselink developed

a correct theoretical treatment to explain the eclipse cooling curve.

In the absence of sunlight, the heat radiation from the surface is just

equal to the flux of the heat from the lunar interior. Thus the calculation

of the cooling curve must take into account heat diffusion as well as the

non-linear surface radiation. In order to solve this non-linear

boundary value problem, Wesselink (1948) assumed a smooth, homo-

geneous surface for the Moon and developed a numerical method

that transformed the diffusion equation into a finite difference equation.

The theoretical surface temperature could then be calculated

numerically for a lunation by assuming a half-wave sinusoidal



variation for the solar flux. Wesselink also calculated the

cooling curve for an eclipse and compared his results with

those of Pettit and Nicholson (1930) and Pettit (1940). He

showed that the thermal parameter of the surface that controls

1
the amount of cooling is the reciprocal thermal inertia (k 9 c) -- _ .

When the theoretical cooling curves were compared with the

observed eclipse temperatures, very high values for the reciprocal

thermal inertia were obtained for the Moon (approximately l, 000,

as compared with 20 for ordinary rock). Wesselink also derived

a value of 650 from the upper limit of 120 ° K for the midnight

temperature obtained by Pettit and Nicholson. Such a large value

3.

for (k 9 c)-- _ indicates either an extremely low thermal conductivity

(k) or density (9) (or both) for the lunar surface since the specific

heat is approximately the same for most materials (0.20 -- 0.25

g-ca i/g U K). Later Jaeger and Harper (1953) showed that the

theoretical curves for an eclipse match the data better if a smooth

layered surface is used. However this model of a dense base

covered by an insulating dust layer conflicts with some of the radio

measurements.

A much more comprehensive observation of a lunar eclipse has

been made recently bySaari andShorthill (1963) at I0 -- 12 _. They

have been able to make temperature maps of the surface during an

eclipse by using a scanning detector (Fig. 20). Some regions of the

Moon's surface are observed to cool more slowly than the rest,

giving rise to hot spots. These thermal anomalies appear to remain

as much as 50 U K warmer than the surrounding areas during the

eclipse, and are generally associated with craters. In additionj several



maria, such as Mare Huraorum, etc. are observed to have a slightly

elevated temperature. The associations of the thermal anomaies with

various features are given by Shorthill and Saari as (Fudali 1966):

FEATURES % ANOMALIES

ASSOCIATED WITH FEATURE

Rayed craters 19.4

Craters with bright interiors at
full moon 41.8

Craters with bright rims at
full moon 23.3

Bright areas with much smaller
crater s

Bright areas associated with features
like ridge s

Bright areas not associated with any
features

3.6

3.9

1.2

Craters not bright at full moon 0.6

Position unidentified o r questionable 6.3

The interpretations of the thermal anomalies observed by

Shorthill and Saari are somewhat uncertain at the present time.

The study by Wesselink shows that the cooling during an eclipse,

under the assumption that the surface is essentially plane and has

unit emissivity is dependent on the reciprocal thermal inertia
2.

(k p c)-- g.
l

The Moon in general has a rather high value of (kp c)-- g.



To account for the anomalous cooling Saari and Shorthill (1963),

Winter (1965, 1966), Fudali (1966), and Bastin (1965) have

proposed several possible explanations that are listed here:

i. The bulk material in the neighborhood of the anomaly has a

lower value of (k p c)-- ½ than the surrounding area.

2. The lunar surface consists of a dense substrate covered bya

layer of dust, and the dust layer is thinner in the anomalous

region.

3. There are steeper slopes in the anomalous regions uncovered

by dust, and the exposed bare rock has much lower values

!
of (k p c)-- 2, lowering the mean value of this quantity over

the anomalous region.

4. The surface is composite, consisting of base rocks strewn over

an otherwise porous surface in the neighborhood of the

anomalie s.

5. The surface emissivity is lower near the anomaly,

6. There is subsurface heating in these regions.

7. The surface layers in the anomalous region are more transparent

in the infrared, allowing the warmer substrate to radiate.

8. The surface is substantially rougher in the neighborhood of the

anomaly than over the surrounding area.

Interpretation i, an increase in k or p for the bulk material in the

vicinity of a thermal anomaly, is most generally accepted.

Explanation 8, which concerns the effect of surface roughness on the
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material making up the thermal anomaly, is an important

alternative. Wesselink's study of eclipse cooling assumes the

surface to be smooth and homogeneous. Several models have

shown that roughness can strongly affect the cooling of an

otherwise homogeneous material. Winter (1965) proposed a

model, which consisted of infinitely deep cracks in the surface, and

calculated cooling curves for his model. Both of these studies

indicate that anomalous cooling may possibly be caused by surface

roughness. It appears at present that any of the mechanisms

suggested could produce the anomalous cooling. Therefore, the

exact nature of the thermal anomalies will remain an unsolved

problem until some experiment can be devised to discriminate

between the various models.

Laboratory simulation and testing of materials yields

considerable information on the possible physical composition

of the lunar surface. Most of the laboratory studies have tried

to simulate the lunar environment. Thermal measurements of

the Moon have shown that for the lunar surface layer either the

thermal conductivity, density, or both, are very low. To

account for this large difference between the lunar surface

materials and those ordinarily found on Earth, it has been

suggested that the lunar surface materials are porous. Sifting

of very fine dust particles under vacuum conditions produces a

porous structure with low thermal conductivity\(Hapke 1963).

Materials with various densities and thermal conductivities have

been made by sintering (Glasser andWechsler 1965).
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THERMAL PROPERTIES OF FOAMED AND POWDERED MATERIALS

Material Porosity Density a

(gin / crn a )

Specific Thermal b (kp c) -½

he at conductivity l

(cal/gmUC) (cal/cmsecOC) /cm2sec2°C "

\ cal )

Pumicite 49 1.27 0.22 149 x 10--e 160

Basalt lava 25 2.08 0.20 530 68

Sintered

pe rlite

(open cells) 88 0.31 0.21 59 510

Pe rlite,

loose 200-_

particle s 97 0.08 0.21 5.5 3300

Olivine

< 70-_
particle s 35 2.0 0.19 3,2 910

Granodiorite

< 20-_

particle s 63 1.0 0.19 7.2 850

a

Density measured in air.

b
Thermal conductivity measured in vacuum <I0--4 Torr

Under a high vacuum many of these samples can be made to have a

reciprocal thermal inertia of about i, 000. However, the porosity

varies over a wide range from 35 % for pumice to 88 % for sintered

perlite. The porosity is related to the density by:
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P = 1 n _2__
P
0

where p is the density of the parent material. The reciprocal
o

thermal inertia (kp c)-- _ for the Moon is well known if one accepts

Wesselink's smooth, homogeneous model. The problem is that

while we know the product of k and p, we do not know their ratio,

which is necessary in order to determine them independently. The

porosity is related to the density as we have shown. A decrease

in density means an increase in porosity. Also, since we have

fixed the product of k and p, this also means an increase in k.

In an indirect way the thermal conductivity gives a measure of the

cohesiveness, since a higher conductivity means larger contact

or strength between particles. Hence, because we have fixed the

value of (k p c)-- ½, we see that an increase in porosity for the lunar

surface also means an increase in cohesiveness.

Some additional information about the material properties

of the deeper layers on the Moon can be obtained from microwave

measurements. The first observations were done by Piddington

and Minnet (1949) at a wavelength of I. 25 cm. Using an antenna

with a beam width of 0.75 U, they obtained the variation in disk

brightness temperature over the period of a lunation. The variation

was approximately sinusoidal, with a peak amplitude of about

52 ° K and a phase delay in the maximum of about 45 ° with respect

to the full moon. Since the radiation in the microwave range is

emitted by all the substrate material from the surface down to a

depth equal to the electrical skin depth, the measurement reveals

temperature information about the subsurface material. Piddington
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and Minnet, using a smooth homogeneous lunar surface model

similar to Wesselink, showed that both the amplitude and phase

shift depend on a parameter 6, the ratio of the electrical skin depth

to the thermal depth. The thermal depth, which is the depth

of penetration of the thermal wave from the periodically heated

lunar surface, is directly related to the diffusivity (k/p c).

Hence if one knew the microwave skin depth, the measurement

would then give the value of the diffusivity for the substrate.

Infrared measurements have fairly well determined the thermal

inertia (/k pc ), so that we can obtain independently the values of

k and p. This is extremely important in determining the porosity

as we have discussed. In Piddington and Minnet's model the

microwave phase shift approaches a maximum of 45° when the ratio

of electrical to thermal penetration depths approaches infinity.

Since they actually observed a delay of 45 ° they proposed a more

complicated model for the substrate, one in which a surface

layer of one kind of material overlies a different material. They

found that their data were consistent with a model in which a dust

layer less than 1 cm in thickness covers a more dense material.

Since the pioneering work of Piddington and Minnet, many

more refined microwave observations and interpretations have

been made. Summarizing many of these, Troitsky (1965) and

Sinton (196Z) concluded that most of the observations are consistent

with a homogeneous substrate. In addition, recent measurements

of microwave cooling during an eclipse (Welch et al. 1965 , Troitsky

1965) provided information about the composition of the material very



near the lunar surface. For example, Welch et al. calculate

from their observations and other data the following probable

material parameters :

14

COMPOSITION OF THE LUNAR SURFAC_ MATERIAL

WELCHET AL. 1965

Density (p) 0.75 g/cm 3

Conductivity (k) 1.25 x 10--b cal/° K cm sec

Heat capacity (c) 0.2 cal/g ° K

Reciprocal thermal inertia
-- i 3-

(k p c) 2 700 cm _ o K sec_/cal

Dielectric constant (¢) 2.2

Porosity 75 _0

Microwave skin depth 43 cm

Like the early models of Piddington and Minnet, these more recent

models still take the lunar surface to be smooth. A calculation of

the effect of roughness on the observed microwave temperature is

needed and might help to resolve the debate between the homogeneous

model and the layered model. Another relevant observation is that

the variation in brightness temperature at microwave wavelengths

_k

has a pole darkening given by (cos 0) 2 , whereas one would expect
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it to be (cos

law surface.

given.

]-

O) _ if the surface were a regular Lambert

No explanations for this effect have been

The determination of the dielectric constant of the Moon

is one of the important results of radio observations. These

are the only observations that permit determination of the

density independently of the thermal inertia. The Russian

investigations have been summarized by Troitsky (1965), who

obtains a probably value of c = 1.5 from several types of

measurements. In one study, for example, the center-to-limb

variation of the polarization of the radio emission was studied and

interpreted in terms of the Fresnel coefficients for a slightly rough

surface. Depending on the roughness model used, dielectric

constants ranging from 1.1 to 2.0 are obtained (Rea and Welch,

1963). Assuming that the surface is basically silicate rocks, a

dielectric constant of 1.5 yields a density of p = 0.5 (g/cc), which

indicates a porosity of about 80 %. Radar determinations of

dielectric constant give higher values ( e _ 2.8) (Pettengill and

Henry 1962a). Again the choice of model for the surface roughness

influences the derived dielectric constant (Rea et al. 1964), but

the values obtained are generally higher than those derived

from passive observations. Troitsky (1965) finds an average

e = 2.25 from a large number of radar measurements, giving a

density of p = 1.0 (g/cc), at least for the deep layers.

Many radar observations have been primarily concerned

with characterizing the roughness of the lunar surface. By

plotting tile radar returns as a function of the delay, one obtains



the amount of reflection in the direction of the source as a function

of the tilt of the surface. Using a gaussian distribution for heights

and an exponential autocorrelation function to represent the centi-

meter scale roughness of the Moon's surface, Evans and Pettengill

(1963) have obtained an average slope of 1 in 7 from 3.6 crn radar

returns. Reaet al. (1964) used geometrical optics to obtain the

slope function directly from 68 cm radar data. They found the

average slope to be between 11 0 (1:5) and 14 ° (1:4). Most of the

roughness on the Moon appears to be due to cratering. Hence the

Moon's surface appears to have an average depth-to-diameter of

about 1:10 for the roughness at a scale in the range 10 -- 100 cm.

High-resolution radar studies (Pettengill and Henry 1962b)

have shown that the rayed craters Tycho and Copernicus return

radar echoes many times more effectively than their surroundings.

This has been interpreted as evidence of more dense materials in

these craters. This would agree with the idea advanced by Saari

and Shorthill (1963) that the thermal anomalies associated with

x
these craters have a lower value of (k 9 c)-- _ for the bulk material.

An alternative interpretation of the radar data is that these

craters are rougher than their surroundings. To date no single

observation has been made that clearly distinguishes between the

alternatives of varying roughness or varying density of the lunar

surface.

Although in the years since the first observations of Pettit

and Nicholson, a great deal has been learned about the physical

nature of the Moon, many uncertainties remain in the interpreta-

tions of the various observations. A number of discrepancies

15a



15u

exist among the results of the various studies, as for example

between the bulk dielectric constant as determined by radiometric

and radar studies, and there are competing explanations for some

phenomena, such as the thermal anomalies observed by Shorthill

and Saari during an eclipse. We suggest that a poor understanding

of the effect of roughness of the lunar surface may lie at the root

of many of these uncertainties, and we wish to propose a specific

model for the roughness to explain some of the observed phenomena,

particularly those observed in the infrared.
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II. PROPOSAL

1 . A Study of the Effects of Lunar Cratering on Infrared Observations

The anomalous infrared measurements of the Moon have

been interpreted by a number of authors as being the result of

roughness on the lunar surface. Pettit and Nicholson (1930) and

Gear and Bastin (1962) suggested this as an explanation for the

peculiar infrared emission pattern of the illuminated Moon. The

anomalous cooling curve during a lunar eclipse for some of the

bright rayed craters has also been interpreted as being due to an

increase in roughness in the crater (Winter 1965, and Bastin 1965).

Most of the evidence indicates that the roughness of the lunar surface

is primarily due to meteorite craters. As has been indicated here,

the smaller craters have a larger depth-to-diameter ratio and

also are much more numerous. Hence, micrometeorite craters

may have a large effect on the infrared measurements.

In this study the effects of small-scale cratering on the

emission from the illuminated and dark Moon will be investigated.

When illuminated by the Sun, these craters will have temperature

variations in them due to local geometry. This is contrary to the

usual assumption of a uniform temperature over a small region.

Such a non-uniform temperature distribution will produce

anomalous radiation patterns. Hence for the illuminated Moon,

the effect of cratering may be an important factor in interpreting

themeasurements of Pettit and Nicholson. During an eclipse there

are two physical processes to consider. A deep crater will be

heated by its own infrared radiation causing an elevation in
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temperature. In addition, there is excavation of heat because the

crater exposes deeper layers. The combination of these two will

result in an anomalous cooling curve, which may possibly explain

the thermal anomalies observed by Sh0rthill and Saari. As will

be shown, the small meteor craters have an important effect on

the infrared emission characteristics of the Moon.
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III. THEORETICAL ANALYSIS

0 Model of a Cratered Lunar Surface

1.1 Description of a Model Lunar Crater

s

The shape of the shadow boundary for the smaller craters

that can be seen in the Ranger photographs indicates an approxi-

mately spherical geometry. From this evidence and studies made

of the Surveyor photographs, it has been proposed that the craters

are the result of a high-velocity impact in a homogeneous non-

cohesive medium (Gault 1966). Hence most of the lunar craters

appear to be of meteorite origin. For this study the shape of a

lunar crater has been taken to be a section of a sphere. This

represents a good physical approximation, as well as making an

exact mathematical solution possible. The parameter that is used

in our model of a lunar crater is the depth-to-diameter ratio,

since the absolute size of the crater does not enter into the

mathematics of the solution. In order to define the spherical

section that represents the crater, the angle subtended by the

crater at the center of the sphere has been chosen, the angle in-

creasing as the crater gets deeper. Hence a hemispherical

crater subtends 180 ° and has a depth-to-diameter ratio of ½(Fig.

The crater angle is related to the depth-to-diameter ratio by

1 -- cos y/2d/D -
2 sin 7/2

I).

(1)
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From a study of lunar and terrestrial meteor craters

Baldwin (1965) was able to derive an empirical relationship

between depth and diameter for a lunar crater. This relation,

which has been plotted in Fig. Z, indicates the the depth-to-

diameter ratio or crater angle increases as the diameter of the

crater decreases. In the smaller craters one reaches alimit

andcraters with diameters less than a few meters apparently all

have the same depth-to-diameter ratio. It is interesting that the

limit of resolution for the Ranger photographs occurs right at

the breakpoint in the curve. If one extrapolates the linear

slope of the curve to very small diameters, one obtains hemi-

spherical craters at a diameter of about 1 ram. The data for the

craters whose diameters are less than the limit of the Ranger

resolution were obtained from explosion craters on the Earth.

One reason for the lack of any increase in crater angle above

100 ° for craters less than a few meters in diameter may be the

slumping of material after the crater is formed. The angle of

repose on the Earth is between 300 and 40 ° (Baldwin 1963). Since

this is about the average slope for a 100 ° crater, one would not

expect to be able to form a deeper crater in loose material on the

Earth. This factor may have an effect on the formation of the

smaller craters on the Moon, where the angle of repose is

probably larger than on the Earth.

It is also possible that the small lunar craters are deeper

than those made in the Earth because the surface material may be

entirely different. Experiments with high-velocity impacts show

that very deep craters can be formed in porous cohesive material



(Gault 1966). There is some evidence that the lunar surface is

very porous (Troitsky 1964 and Kuiper 1966). In one Surveyor

photograph there is a clear picture of a practically vertical hole

made by the footpad during the landing. Although the spacecraft

did not approach the surface with the same velocity as a meteorite,

it is interesting that one can produce a steep-walled crater in

lunar material. As a result one might expect to find craters

with large depth-to-diameter ratios on the Moon. One of the

parameters to be determined by our study is the depth-to-diameter

ratio or crater angle y for the small-scale lunar craters.

22

i. 2 Assumptions Made Concerning the Surface of a Crater

The reflection, absorption, and emission characteristics

of each element of area in the crater are assumed to be isotropic.

This is on the scale of a few microns, which will be referred to as

the microscopic scale of the crater. Such an approximation is

equivalent to saying that the individual surface elements obey

Lambert's law, i.e. the absorption of radiation is proportional to

the cosine of the angle of incidence, and the reflection and emission

of radiation are proportional to the cosine of the angle of the

observer with respect to the local surface normal:

where

1

r

r

I _ I cos @ cos @
r i i r

intensity of the incident flux

intensity of the reflected or reradiated flux

angle of incidence

angle of reflection or emission
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The assumption has been made that the microscopic behavior of

the individual surface element is isotropic. In fact the Moon's

surface deviates somewhat from the cosine reflection law due to

the optical backscattering (Fig. 3), but a cosine approximation is

sufficient since the amount of reflected light is very small

(Appendix I). The Bond albedo (total reflected light integrated

over a hemisphere/incident light) is taken as 0. l, a mean value

for the Moon's surface (Harris 1961 and Minnaert 1961). The

infrared albedo is taken to be zero. This introduces at most a

small error since the infrared albedo is, in general, smaller than

the optical albedo. The emissivity of the surface is thus assumed to be

1.0 in the infrared. On a larger macroscopic scale, it is assumed

that the dimensions of the crater are sufficiently large that geo-

metric optics can be used.

The heat conducted into the deeper layers is assumed to flow

normal to the local surface. This approximation breaks down only

for very small craters. To determine the limiting size for which

the approximation is valid one must calculate the tangential flux

for both the illuminated and dark crater. This will be discussed in

detail in Sections 3.8 and 4.5.

I. 3 Consideration of Radiation and Reradiation in a Lunar

Crater

In describing the behavior of a crater on the lunar surface,

one must take account of a number of factors. The theory developed

must be valid for the day and night periods of a lunation as well as

capable of prediciting the transient response of the crater during
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a lunar eclipse. This requires the inclusion of the effect of heat

conducted between the surface and the deeper layers, which,

while negligible during the illuminated periods, is dominant on

the dark side or during an eclipse. The Wesselinkmethod of

making a finite difference diffusion calculation is well suited for

solving this latter problem numerically.

Consider a spherical Lunar crater that is illumina-

ted by the Sun (Fig. 5). The amount of solar flux received by an

element of area in the crater is proportional to the cosine of the

angle of incidence with respect to the local surface normal. For

an albedo of 0. I, i0 % of this flux is reflected and the rest of it

is absorbed. The absorbed energy is in turn emitted from the

surface as thermal radiation except for a small amount that is

conducted down into the surface. At night the heat is conducted

up from the deeper layers and radiated out of the surface as thermal

radiation. This process is then repeated in the next lunation. Due

to the shape of the crater, certain regions will be in shadow for

part of the day and hence receive no direct insolation. It is clear

that each point in the crater receives a different illumination as

a function of time. Therefore the calculation of the temperature

history of a point in the crater must take into account the effects

of shadowing and local incidence angle. In addition, during an

eclipse all parts of the crater will experience an attenuation of the

solar flux as the Earth passes in front of the Sun.

In setting up the problem, the radiation interchange within

the crater must be studied in detail. There are two processes

that will be considered. Both of these involve the absorption of



radiation from other parts of the crater. The most important

effect is that some of the infrared radiation emitted by an

element of area in the crater is intercepted by the rest of the

crater. Thus the flux absorbed at a point has a term that is a

function of the amount of infrared radiation being emitted by

all other points in the crater in addition to the direct solar flux

term. A smaller effect is produced by the multiple reflection of

the solar radiation within the crater. However, this optical

reflection is very quickly absorbed due to the low visual albedo

(0. i). It has been assumed that both the processes of emission

and diffuse reflection have a cosine dependence. Since they have

the same functional dependence, they will have the same spatial

distribution throughout the crater. In the process of multiple

reflection most of the visible radiation is converted into infrared

radiation by absorption and re-emission. As a result the crater

is unable to distinguish between the two, and hence both will be

referred to as the reradiation flux term.

To show this in detail an area of the crater illuminated by

the Sun will be considered (Appendix I). Neglecting the amount of

flux that is conducted down into the surface, 90% of the solar flux

is absorbed and then radiated away from the surface in the infra-

red, while i0% is reflected in the visible. A fraction of this

reradiation flux will be intercepted in some other region of the

crater where all of the infrared flux will be absorbed since it has

been assumed that the infrared albedo is zero. Again 90 % of the

optical flux will be absorbed and i0 % reflected, however the

optical flux is only I0 % of the total reradiation flux. Hence, 99 %

26
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of the total reradiation flux is absorbed. Wha_ has been shown

here is that for each element of area the amount of direct solar

radiation absorbed is reduced by 10%d_e to the albedo, while the

amount of reradiation flux absorbed is only red,iced by 1%, i.e.

the square of the albedo. The main et'fect of t!,e _lLedo on t],t.

reradiation _s t_ change the ratio of the visible co_-nponentto t_c

infrared component. It has been de_nonstrated here that re radiati on

within a crater is virtually independ;znt ol _:hevalue of the surface

albedo when the albedo is small. This is g,_neral, and it do_ _ot

depend on the shape of the lunar crater.

1.4 Density of Lunar Craters

As an _pproximation to the actual sinaIl scale lunar surface, c_e

can imagine that the Moon is covered by a large number of spherical

craters distributed at random across a flat surface. The fraction of

the area which is covered by such craters is defined as the r,.l_tive

crater density. The relative crater dersity can be expressed as:

Relative Crater Density + Density of Flat Area = 1.0

Hence we have made a model of the lunar sur1_ce which consists of a

certain density of spherical craters with constant depth to diameter

ratio spread out across an otherwise flat surface. The two parameters

of this model are the depth to diameter ratio (or crater angle) and the

relative crater density. There will be some statistical distribution of

these two parameters which will vary from point to point. The full

Moon and subsolar point measurements of Petit and Nicholson represent

an average of the surface characteristics because each data point is
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is taken from a different part of the surface. This suggests that the

data contains information on the average statistical distribution of

crater angles and density. The parameters we have chosen each

represent a mean value for the distribution. This is obviously an

idealization, however it provides as elaborate an indication of the

small scale lunar surface as can Le obtained with present data_

In this study of the behavior of a crater on the lunar surfac__,

a number of physical processes are considered. During half ol

the lunation the crater is illuminated d_rectly by th_ Sun. In

determining the intensity of the isolation, the effects of iocal

incidence angle, shadowing, and albedo are important. Accounting

for the flux conducted down into the surface is necessary in giving

the dark side behavior of the crater. In additio:_ a large amount of

flux within the crater is due to the effects of reradiation. In the

following sections a theory will be developed that will describe the

temperature and radiation in a lunar crater consistent with the

physical processes that have been discussed.
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, _o Mathematical Analysis of the Temperature Distribution

2.1 The Integral Equation for a Spherical Crater

One of the important effects that we have discussed concerns

the radiation interchange within a lunar crater. Essentially this

reradiation represents the interaction between various parts of the

crater. The mathematical statement of a problem involving radiation

interchange is an integral equation. The solution to such an integral

equation will then describe the balance of radiation in a lunar crater.

There are a number of physical processes that must be accounted for

in setting up the integral equation. The flux balance at an element of

surface area in the crater is shown in Figs. 4 and 5. The amount of

incident solar flux that is reflected by the element of area is determined

by the albedo. In addition to the solar flux there is a certain amount of re-

radiation flux illuminating the element of area. We have discussed the

assumption that, while all of the reradiation flux is absorbed, only a

fraction of the solar flux, equal to one minus the albedo, is absorbed

(Appendix I). Conservation of energy requires that all of the energy

absorbed must be either conducted into the surface or emitted as thermal

radiation in the infra-red. This can be expressed as a flux balance for

the element of area as follows:

<_T _ = (I -- a) f cos
S

+ f + _ Illuminated region
r c

(2)

T _ = f + f Dark or shadowed region
r c
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where:

c_ = Stefan Boltzman constant = 1.36 x 10 -12 g cal/cm _

sec ° K 4

T = Temperature of the element of area

a : Visual albedo = 0.1

f = Solar constant = 0.033 g cal/cm e sec
s

f = Re radiation flux
r

f = Conducted flux
c

= Incidence angle with respect to local surface normal
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Thus the temperature of a point within the crater is dependent on three

quantities: the direct solar illumination, the reradiation flux and the

conducted flux.

In order to calculate the infrared reradiation flux we consider

an element dA radiating into an element dA / (Fig. 6). The flux from dA

is assumed to radiate in a cosine pattern about the surface normal.

From the spherical geometry chosen for the crater it is obvious that the

normal to the surface is just the radius of the sphere that passes

through dA. For any two arbitrary points dA and dA' on the sphere

defining the crater we consider the plane containing dA, dA _, and the

center of the sphere. In this plane the two radii that are the surface

normals to dA and dA' then form an isosceles triangle with the chord

that connects the two areas. This triangle has two sides equal to r,

the radius of the sphere, and two equal angles that we call $. Note

that $ is also the angle of the reradiation flux with respect to the local

surface normals of dA and dA'. The third side of the triangle is lZ, the

distance between the two elements of area, and simple trigonometry

shows that:
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R = Z r cos 4 (3)

by:

The brightness of the area dA is related to its temperature

1 g cal
B = -- (JT_ 2 (4)cm sec steradian

To find the amount of power radiated from dA to dA', we must

multiply this brightness by the cosine of the angle of emission,

the solid angle subtended by dA', and the element of area dA.

dP = B cos _ dfl dA (5)

The infrared reradiation flux at dA' is then just this power divided by

the element of area dA_:

Af _ dP = B cos q_ df_ dA (6)
r dA _ dA i

It should be emphasized that we are only calculating the infrared

component of the reradiation. By definition the incremental solid angle

dO is the projection of the area dA' in the plane perpendicular to R

divided by the square of the distance, i.e.

dA' cos _ (7)
dfl = R e
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We can now write the reradiation flux from dA by using Eq. 4 for

B, Eq. 7 for d_, and Eq. 3 for R, which when substituted into Eq.

gives:

c_T4 cos _ dA _ cos _ dA
Af =

r _ (2 r cos _)_ dA _

T 4
Aft - 4_ r "_- dA

(8)

Note that the cosine of the angle ¢ has dropped out of the expression

for the reradiation flux indicating that the amount of reradiation flux from

dA depends only on the temperature of dAand not on its position in the

crater or distance from dA'. This simplification is a direct result

of the spherical shape of the crater and allows us to obtain an exact

solution for the reradiation term. The contribution of the reradiation

flux at dA _ from the entire crater can be obtained by integrating the

amount of flux from the arbitrary area dA. Thus the reradiation term

is just the integral over the crater floor of Eq. 8,

r 4rr r e dA (9)
A

C

A
C

(e, _) :

Crater floor area (Appendix II)

Spherical coordinates giving position on the crater

surface

" where only T is a function of position within the crater.
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Substituting the expression for the infrared reradiation flux

(Eq. 9) back into the original flux balance relation (Eq. 2), we obtain

the integral equation for the temperature distribution in the crater: @

o T _
T 4 = (I -- a) fs cos _ + 4_---__ 7 dA + f Illuminated regionc

A

c (i0)

_T 4 : (7 2
A

c

T _ dA + f Dark or shadowed region
c

The reradiation term can be seen to be independent of position within

the crater, being only a function of the integral or average of the

fourth power of the temperature. Hence, the reradiation flux is constant

throughout the crater resulting in a rather unique form of integral

equation for the temperature in which the kernel is unity. This is due

to the spherical geometry chosen for the crater. A cylindrical

structure (Eq. 36) or other shape would require a much more complex

integral equation.

2.2 Equations Describing the Temperature History of a Crater

In solving the integral equation it is useful to define a symbol

representing the integration over the crater surface. Therefore we will

use a bar over a quantity to indicate a spatial average over the crater:

T _ 1- A _ T '_ dA
c A

c

CJ

A c : vJ dA : crater floor area
A

c

(II)
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Note that this is not the average temperature to the fourth power

but the average of the fourth power of the temperature. With this

notation the integral equation becomes

oT _ = (1 -- a) f cos
S

oT _ = CoT _ + f
C

+ Co T 4 + f Illuminated region
c

Dark or shadowed region

(12)

where :
A

C

C = 4----_-_ (Appendix II)

It should be emphasized here that while the temperature varies for

different positions within the crater the reradiation term is not a

function of position within the crater. Hence it is possible to integrate

the integral equation over the crater floor. The integral of the

reradiation term is just the integral of a constant and therefore it

can be removed from underneath the integral sign:

m

; O T _ dA = _ (1 -- a) f cos _ dA + Co T _ ; dA
S

A A A
c C C

+ _ f dA
A c

c

Illuminated or shadowed region

7 (_T 4 dA = Co T 4 ; dA + 2 f dA Dark regionc
A- A A

C C C

(13)

Having integrated the flux balance relation (Eq. 2) over the crater

surface, we must realize that the first of Eq. 13 applies to the entire

crater during the lunar day and the second equation applies during the



lunar night. The lefthand side of the equation contains the average

fourth power of the temperature discussed previously. The last

term on the right is a similar spatial average. In performing the

integral of the solar flux term we must be careful to realize that

the solar flux is zero in the shadowed region. In addition, if we

consider that cos * dA is the projected element of area of the

crater floor in the direction of the incident solar flux, it is obvious

that the integral of this area over the illuminated region times the

solar constant is just the total power entering the crater (Fig. 5) .
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where:

A

a

@
o

p

r f cos _ dA = f A cos @ = P
J s S a o

A
C

Aperture or crater opening area (Appendix II)

Incidence angle on a flat area with respect to the local

surface normal

Solar power entering the crater

(14)

Using our previous notation we can rewrite Eq. 13 in the following form:

o T 4 A = (I -- a) f cos @ A + Co T _ A + f A
C S 0 a c c c

oT _ A = Co T 4 A + f A Dark region
C C C C

Illuminated region

(15)

Dividing by A c and collecting terms we have:
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A

T _ (1 -- C) = (l -- a) f cos 0 _ + f-_ Illuminated region
s o A c

C

a T _ (1 " C) = T
c Dark region

(16)

Some trigometric integration will show that for a sphere (Appendix II):

A a / A
A - \I 47Cr-w)= (I- c) (17)

C

Hence substituting this in Eq. 16 and dividing by

A

a we finally obtain:
A c

A
= + c f llluminate d

T _ (I -- a) fs cos @o _ c
a

A

a T _ - c _- Dark regionA c
a

or shadowed region

(18)

Note that:

f
r

= C _T _

Therefore, what we have obtained in integrating the integral

equation is an expression for the reradiation flux in the crater. It is

important to point out that this represents only the infrared component

of the reradiation. Thus Eq. 18 corresponds to the case where only

infrared reradiation is present. There would be no visible component

if all the relected solar flux were very sharply backscattered out of

the crater and did not intersect the walls of the crater. However, the

actual reflection function is better approximated by the Lambert cosine

law. We have shown that with a cosine law reflection the total

reradiation flux is virtually independent of the visual albedo (Appendix I).
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This has the effect of removing the (I -- a) factor from Eq. 18

when we consider both the visible and infrared components to the

radiation. Thus the reradiation expression for cosine law

reflection is:

-- A
T 4 = f cos @ + c _-

s o A c
a

A

o T _ - c _- Dark regionA c
a

Illuminated or shadowed region

(19)

The relations that we have derived describe the radiation

balance at the surface of the crater. In order to account for the

flux conducted down into the surface we must consider the heat

diffusion equation:

V 2 T -- 1 dT _ 0
K dt

k
K -

pc

(Z0)

where K is the diffusivity. In addition we need the relation between

the flux and temperature for a bulk material:

f = k V T (21)

We will assume a one-dimensional diffusion problem with the heat

flux flowing perpendicular to the local surface. The Wesselink

procedure is appropriate for solving this type of diffusion problem

on a computer. The equations necessary for describing the complete
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temperature history of a crater are the integral equation (Eq. 12),

the expression for the reradiation flux (Eq. 19), the diffusion

equation (Eq. 20), and the conductivity relation (Eq. 21). We

summarize these again to emphasize their importance. (Note that

Eqs. 22a and b apply to the illuminated region, Eqs. b and c to the

shadow region, and Eqs. c and d to the dark region.)

T 4 = (I -- a) f cos _ + CoT _ +
S f Illuminated region

C
Ca)

w

_T 4 = f cos e
8 0

A
+ --£ F

A c
a

Illuminated or shadowed region (b)

_T 4 + f Dark or shadowed region
C

A

•_ T ¢ = c f Dark Region
A c

a

dT
f = k

c dz

(22)

(c)

(d)

(e)

_- = k d___T
c dz (f)

de T I dT
_ _ _ 0

z K dt
,Oz

(g)

d2r " 1 0_

dz _ -- K dt - 0 (h)

The averaging in Eqs. 22f and h is over the crater surface, not

over the variables z or t. Section 3 will concern only the behavior

of the illuminated crater, and therefore diffusion of heat
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into the surface can be neglected (Wesselink 1948). In this

case the integral equations and the expression for the reradiation

flux (Eq. 22a -- c) are sufficient to describe the temperature

distribution in the crater. The section following this (4) will explore

the eclipse and lunation cooling of a lunar crater and will employ

all of the Eqs. 22 in a numerical diffusion calculation. It should

be noted that, except for the assumptions presented in Section I. 2

and the approximation made in Section 4.2, these equations represent

an exact solution for the thermal behavior of a spherical lunar

crater.
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. Daytime Study of the Moon

3.1 The Experiments of Pettit and Nicholson

Infrared observations of the illuminated Moon were made

almost 40 years ago by Pettit and Nicholson (1930). Their equipment

consisted of a thermocouple that was used as a radiation detector

and a glass slide and water cell for the filter. In spite of the primitive

nature of this equipment in comparison with the cooled semiconductor

detectors and interference filters used today, they were able to obtain

excellent data on the illuminated and eclipsed Moon. This is partly due

to the extreme care that they used in reducing their data. The

transmission of the atmosphere and filters were worked out in detail.

It is remarkable that they were able to obtain a minimum detectable

temperature of 120 o K. Present sensitivities in the 8 -- 14 _ telluric

water vapor window are around 105 ° K. The equipment was mounted

at the focus of the Mt. Wilson 100" telescope. The data on the illumi-

nated Moon were obtained from two kinds of experiments: scans across the

full moon and tracking of the subsolar point. The results obtained

do not agree with a smooth Lambert sphere model for the Moon. In

this section we will show that the anomalous results obtained by Pettit

and Nicholson can be interpreted as the result of micrometeorite

craters covering the lunar surface.

The first experiment that Pettit and Nicholson performed on the

illuminated Moon was to scan across the equator during a full moon

(Fig. 7a). Essentially this was equivalent to a laboratory experiment

where the source and detector are fixed at the same angle
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and the tilt of the surface is varied. The results of this measurement

showed an apparent limb brightening over that predicted by a smooth

Lambert sphere. Thus the lunar surface emits in the direction of the

source more thermal radiation at oblique incidence than a Lambert

surface.

In the second experiment they followed the sub-solar point for

half a lunation (Fig. 7b), thus giving data on the radiation pattern of

the surface under normal illumination. This was equivalent to main-

taining the source fixed normal to the surface and rotating the detector.

The measurement revealed a sharp decrease in the radiation tangential

to the surface compared with a Lambert area. Hence the thermal

emission from the lunar surface is peaked in the direction of illumi-

nation for both normal and oblique incidence.

3.2 The Temperature Distribution in an Illuminated Crater

The amount of heat flow into the lunar surface is extremely

small when compared with the solar flux. Wesselink (1948) calculates

that the conducted flux is 1% of the radiation flux at the sub-solar point.

This means that the daytime temperatures on the Moon are determined

almost entirely by the radiation balance at the surface. This radiation

dominated temperature distribution can be calculated directly from

Hkl s. 22 without the need of a computer. The reradiation flux is given

by Eq. 22b where the conduction term is neglected

o T_ = f cos 0 (23)
s o
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The temperature of a point in the crater is given by Eqs. 22a and 22c

again neglecting the conduction term:

Illuminated region:

oT 4 = (1 -- a) f cos _ + Co T 4
s

Shadowed region:

(24)

m

oT 4 = Co T _

We can directly substitute Eq. Z3 into Eqs. 24 and immediately obtain

the temperature distribution:

Illuminated region:

T _ = (1 -- a) f cos _ + C f cos e (25a)
S S o

Shadowed region:

o T 4 = C f cos 0 (25b)
S O

This is a simple analytic expression for the temperature in a lunar

crater and only requires the knowledge of the solar incidence angle with

with respect to a flat area (_o) and with respect to the local element

of area in the crater ( @ ) as shown in Fig. 5. It should be noted that
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or

e < @ - 90 +_ /4 -- _/2
a

e > e = 90 -_/4 -_/2
a

(26)

These shadow limits are derived in Appendix III. Effectively the Sun

rises late and sets early due to the crater walls.

3.4 The Angular Distribution of Radiation from a Crater

The inhomogeneous temperature distribution in the crater,

which is expressed in Eq. 25, raises the question of whether or not

the crater as a whole radiates according to the Lambert cosine law.

Pettit and Nicholson plotted the distribution of planetary heat (radiation

pattern) about the sub-solar point and found the lunar surface to deviate

significantly from a Lambert surface (Fig. 9a). To show that such a

deviation from a Lambert surface can be explained by the presence of

small, unresolved craters, we calculate the radiation pattern of

various craters.

Up to now we have only been interested in the total flux or

Poynting vector (watts/m 2) at a surface and the integrations performed

have been rather easy. The radiation pattern involves calculating

the average brightness of the surface in a particular direction

(watts/m2/steradian). In effect this means integrating the brightness

(multiplied by the Lambert cosine law) over the crater surface and

dividing by the crater aperature area. We assume the Sun to be

directly overhead, since this is the sub-solar point, and vary the angle

of the observer. We must be careful in the integration only to
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integrate over the part of the crater seen by the observer and not

the whole crater. Since the Sun is directly overhead there is no solar

shadowing, but there is this effective shadowing by the observer.

The situation is shown in Fig. 10. The Sun is at an angle

with respect to the surface normal at P. Similarly the observer is

at an angle ¢ '. The temperature of the point P is given by Eq. 25a,

where the Sun is at the zenith (@0 = 0) so that the whole crater is

illuminated:

T4 = (I -- a) f cos _ + Cf (Z7)
s s

C _

A
c

4_r_/v

The point P radiates according to the Lambert cosine law, giving the

brightness of P in the direction of the observer as:

4' - c_Ta (i -- a) fB cos cos rr s cos cos

f

+ C --_-s cos _ '
17

(z8).

We now integrate this over the crater floor, integrating only over the

region not shadowed by the observer. The second term ir_ Eq. Z8

only depends on _ ' and therefore is just the projected area in the

direction of the observer. Being careful to integrate only over the

unshadowed floor, as in Eq. 14, we obtain:

" (Z9)J cos_ ' dA = A a cos (30

observable floor
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where A a equals the aperture area and Oo is now defined as the

direction of the observer. Thus the second term of Eq. 28 gives just

the results of a Lambert surface. The total integrated brightness

is then:

(i --a) f
- _l s f cos _ cos dAB cos _ dA

f

+ C --_-sA cos@
a

(30)

The average brightness of the crater is obtained by dividing

Eq. 30 by the projected area of the crater as seen by the observer,

i.e. A cos 8 :
a o

f

-- 7LA(Icos- cos _cos _' dA + CA
a o

(31)

The integral is performed only over the observable floor using the

geometry shown in Fig. lla. To make the integration easier, we

rotate the coordinate system to Fig. llb where the observer is now

on the z-axis and the Sun and the crater have been tilted by @
O"

(The Sun is still directly over the crater; however, the angle _ has

been rotated by 180 ° .) In Appendix III we have worked out the form

of the integral as:

r 2 cos 0 2_
i o

cos * cos ¢ dA - 3 _ (c°s_O -- c°s30 ) d_1 2
O

r 2 sin @ 2_
0

3 f (sin a O -- sinaO ) cos ¢ d_
i

o

(32)
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The limits of the e integration (e and e ), which appear in
1 2

Eq. 32, are functions of 4. They represent the spherical coordinates

of the shadow-rim boundary shown in Fig. 12. The contour has to

be evaluated numerically. The geometry for solving for the shadow-rim

boundary is as follows. The observer on the z-axis sees all the region

of the crater within a cylinder that intersects the crater rim. Since

the cylinder is defined by the circular rim, which is tilted at an angle

@ its base is an ellipse. The intersection of this elliptical cylinderO '

with the sphere is the shadow-rim contour. The coordinates of the

contour must be solved numerically and then the integrals in Eq. 32

run on a computer. The results of the computer for the sine and

cosine integrals are given in Table I for various crater angles and

observing angles. Generally the angle @ is zero except when the
1

shadow-rim boundary is entirely on one side of the z-axis. Except

for this case the @ integration is between @ and zero. These integration
2

limits are derived in Appendix V. For the hemispherical crater the

limit can be stated analytically:

1 + tan _ 0 cos 2 4
o

tan 2 e cos _ 4
COS 2 @ = o

2 I + tan 'z8 cos2 ¢ (33)
o

= 0
1

From Appendix II we have the expression for the aperture area A
a

as:

A
a

4_ r _ C (1 -- C) (34)
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Crater Angle

% 180 o 150 o
0 6.2832 6.1743

5 6.2814 6.1!370
lO 6.2691 6.1056

15 6.2360 6.0218

20 6.1725 5.9072

25 6.0700 5.7591

30 5.9208 5.5727

35 5 •7191 5.3434
40 5.4603 %.067)

45 5.13416 4.7442

50 4.7621 4.3714

55 4.3928 3.94o5
6o 3.8P('_ 3.4_3(
65 3.27 ? •o7 _'3

70 2.681L ? .,<777
75 2 .oa79 ] .[:£93
80 1.3821 1 .?_53

85 0.6963 ].6P(_

CO31iiE L_T_ RAL

(y)
120 ° 90° 60o

5.4978 4.061@ 2.2021

5. _'_710 4.0364 2 .]866

t_.3912 3 •9613 2.1406

5.2610 3.8385 2 °0655
5.08424 3.6720 I. _634

4 .£666 3.4666 i .8377

A.61L2 3.9287 1.6920
.33A_ 2 •9655 i .5308

4•0309 2.6850 ] z_90• .2.

3.7050 2 •3957 i .1802

3.3576 2 .lO66 1 .c)Oa3
2.9896 1.8205 0.83_I

2.6024 1.5415 0.672&

2.1362 1.2716 0 •5261
! •7788 I .0059 0.3965

1.3_47 0.74_7 o .28_3
0.909.5 0.495L' o .i807

0.4530 0 •2472 0.0880

30 °

0.6206
) .6i60

0.6023

0.5798

:.,'.5495
._.5115
0 .a685

0.24195

3 ._684
.,•._162

, .?_25
.21!9

<.".1636
o •1198
") .0817
0.0517
0.0290

C:.0127

56

I0 °

0.07]5

0.07 D9

0.0693
0. J6_7

0 .O630
0.0584

O. 0478
0.0417

o .o359
0.0298

0.0237
0.0178

0.0130
0.008d
0.0050

0.0023

0.0OO7

Crater An@le

% 180 ° 150 o
0 -0.00 -0.0000

5 -3.00 -0.1976

i0 -O.OO - 9.3£92

15 -0.00 -0•5690
20 -0•00 -0.7314

25 -d.O0 -0.[_717
30 -o•oO -0.._855

35 ...... -"_,,.,._0 - I .,6_3

40 -0 "_'_ . 7 .1207

4_ -0.00 -_ .I_7_

50 -0.00 -I .1207
55 -0.00 -1.0693
60 -0.00 -0.9855

65 -O.O0 -O.C717

70 -O.OC -0.731 =
75 -0.00 - 0.5630
80 -0.00 -0.3_99

85 -0.00 - 0.I]71

(,,,)
120 o 90 ° 60° 30 _ IO °

-0.0000 -0.0000 -0.0000 -0.0000 -0.0000

-0.3069 -0.2893 -0.Y;72 -0.0529 -0.0069
-0.6044 -0.5698 -0.3490 -O.iOa3 -0.0i22

-0.9836 -0.8330 -0.5101 -0.1525 -0.0178

-1.1359 -1.0709 -0.g558 -0.1960 -0.0929

-I .3537 -I .2763 -0.7_16 -O .2335 -_0.0272
-I.5304 -1.4&29 -0.8836 -0.2642 -0.0308
-1.6606 -1.5656 -3.9587 -0.2862 -0.0354

-1.7403 -1.6408 -i.:C_8 -n.3001 -0.0349
-1.7671 -1.6661 -I.019_ -C._0_3 -0.0357

-1.7403 -1.6409 -l.<]Oa5 -0.3000 -0.0353
-1.6606 -1.5656 -0.9589 -3.2871 -0.0337

-1.533a -1.4a26 -0._8_3 -9.244-6 -0.0306

-1.3534 -1.2771 -0.782i -0.2338 -0.0275

-1.1363 -1.0702 -0.6563 -0.1948 -0.0292
-0.8833 -0.8330 -0•5106 -0.1527 -0.0180

-0.6046 -0.5690 -0.j492 -3.1046 -0.0122

-0.3072 -0.2896 -0.1773 -0.0!29 -0.0061

Table I

Intesrals Evaluated on the Computer
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Substituting this and the integral shown in Eq.

ness equation (Eq. 31), we get:

3Z in the average bright-

f (i al
-- S L , --B - _ IZ_ C (i C) _ (c°s3 @

-- i
O

--cos @ ) d4
2

(i -- a) tan @ 2

o _ (sins @ -- sin3@ ) cos 4 d_ + C jIZ_ C (i -- C) ; 2 l
0

(35)

Since f /_ is the brightness for a flat Lambert surface, we
s

refer to the quantity in brackets in Eq. 35 as the radiation pattern

for the crater. Thus the radiation pattern for a flat surface is unity

in all directions. This definition of radiation pattern as the ratio of

the brightness of a rough surface to the brightness of a flat Lambert

surface is appropriate for comparison with the distribution of planetary

heat about the subsolar point obtained by Pettit and Nicholson.

3.5 Radiation Patterns of Several Craters

The brightness of a radiating surface is proportional to the

amount of power that a detector would receive when looking at the

surface in a particular direction. This is related to the brightness

temperature by the Pl_nck radiation law. For a Lambert surface the

cosine law is cancelled out by the secant dependence of the area seen by

the detector. Hence a Lambert surface appears equally bright from any

direction . The brightness of a rough surface, however, is dependent

on the direction from which itis viewed. The Moon's surface has an

anomalous radiation pattern such that its brightness will appear higher

in the direction of the Sun and will decrease away from the Sun. The

case of the sub-solar point is illustrated in Fig. 9a.
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The average brightness of a crater under normal incidence

can be calculated fromEq. 35 and Table I. The terms inside the

brackets represent the radiation pattern, which is unity for a Lambert

surface. For a crater the radiation pattern decreases as the angle

of the observer (@) increases. This is due to the fact that the
0

observer sees more of the rim and less of the central region. Tb_

surface visible at the rim has a much lower temperature tl_an that

at the center (Fig. Z5a). Thus the effective brightness temperature

of the crater is peaked in the direction of i]l_l_inati_n.

The radiation patterns for se_ eral different crater angle

were evaluated and plotted in Fig. 13. The Pettit and NichoLsoa

data for the Moon is plotted along with them. This represents a

relative crater density of 1.0. Adding a certain amount of flat area

reduces the variation in brightness so that it approaches a constant

value. We illustrate that in Fig. 14, where the brightness of henri-

spherical craters is shown for various values of relative crater

density. In comparing Figs. 13 and 14, we see that to some extent

one can make a trade-off between relative density and depth to

diameter ratio and still obtain a good lit to the Pettit and Nicholson

data. We will attempt to resolve this problem by obtaining the density

from the data on the scan across a full Moon.

The radiation patterns that have been calculated from the avera,_e

crater brightness, Eq. 35, have assumed that the detector has an

infinite spectrum bandwidth. This is not quite accurate since ihe

observations of Pettit and Nicholson were made in the 8 -- 14_ telluric

water vapor window. To calculate the brightness of a crater as seen
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in this window, we have interchanged the order of integration in

Eq. 32. By integrating over _ first we are integrating over strips

of constant temperature. The 8 integral can then be evaluated

numerically using the integral of the Planck radiation law to

approximate the flux in the 8 -- 14 _ interval. The calculation

shows that the effect of this limited bandwidth is small. This is

because we are working in region of the Planck radiation curve

that varies approximately as T _ so that assuming a T 4 variation in

brightness (Eq. 28) is sufficient. A plot of the radiation pattern of

a 180 ° crater, as seen in the 8 -- 14 _ interval, and for an infinite

bandwidth detector is shown in Fig° 15°

3.6 Cylindrical Model for a Crater

In order to predict the radiation patterns for craters deeper

than hemispherical, we have set up a cylindrical crater with the Sun

at normal incidence. In this case only the bottom of the crater

receives direct radiation from the Sun. The bottom is assumed to

be at a uniform temperature. The walls of the crater are heated by

the reradiation flux. The integral equation governing the temperature

on the walls of a cylinder is derived in Appendix VI.

d

,) ,) ,_T 4(z) = fb(z) + _ K (z, z aT (z dz (36)
o

41 fo

fb (z) = ; " 2---_ (cos Z 0 -- cos Z El ) d 4 (37)
2 1

0

--= -- COS _ + (COS 2 _ -- z e sin 2 _)g
i_2 Z



cotan $ = z
i

where fb is the flux radiated from the bottom of the crater. The

62

kernel is no longer simple, as in the case of a spherical crater, and

must be numerically integrated.

¢

1 _2n r 2 sin m 2 _ d_g

K(z, z') :_T o Li(z -- z')_ + 4sin 2 _ )

(38)

The solution to the integral equation was obtained by a successive

approximation method. A trial temperature distribution was substituted

into the right side of Eq. 36. The integral was then numerically

integrated to give a new temperature distribution on the left side of

Eq. 36. Convergence was dependent on the depth-to-diameter ratio of

the crater, with a 5 : 1 depth to diameter crater requiring I00

successive approximations. Shallower craters converged more

rapidly.

The brightness of the crater in a particular direction is then

easily obtained by numerically integrating over the visible region of

the crater as was done for the spherical crater. The results of this

calculation are shown in Fig. 16. The radiation patterns show an

interesting reversal of curvature as the depth-to-diameter ratio

increases. The deeper craters exhibit a pattern more typical of the

photometric back-scattering, while the shallower ones approximate the

thermal radiation patterns. This suggests that the craters causing the

anomalous daytime radiation patterns are approximately hemispherical.
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3.7 Apparent Temperature Across the Full Moon

The variation of thermal radiation, if the Moon were a Lambert

surface, should follow a cosine law across to the limb. The data of

Pettit and Nicholson (1930) and work by Shorthill and Saari indicate

2a (cos 8) n variation with the exponent (n) equal to _ at the center but

decreasing toward the limb. The data, which is illustrated in Fig. 9b,

exhibits a large scatter indicating an uncertainty in the value of the

exponent. Accepting the value of § , the apparent temperature variation

is:

Lambert Surface Moon

oT a _ cos @ OT _ _ (cos @) _

! l
T _ (cos @) _ T _ (cos @)-G

(39)

Hence the Moon's surface exhibits an infrared limb brightening when

compared with a smooth Lambert surface. These experimental results

can be explained by the presence of craters that affect the apparent

temperature of the full Moon.

The calculation proceeds in the same way as for the radiation

patterns. The Sun is now at the same angle as the observer { _ = q_i)

and so both can be placed along the z-axis with a suitable rotation

(Fig. 17). Eq. 25a can be applied since the solar and observer

shadowing are identical:

o T _ = (i -- a) f cos _ + C f cos _ (40)
S S O
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The S un is at an angle @ to the lunar surface normal thus giving aO

different temperature distribution than in the radiation pattern

calculation. The brightness is the same as previously (Eq. 28):

B cos _ - o T _ (i -- a) fs f
cos _ = cos2_ + C s cos O cos _ (41)

13" 1-[ 1-[ 0

Again the second term integrates to give the projected crater

aperture :

J'cos _ dA = A cos @
a o

(42)
(1 -- a) f f

j. sj. s° sB cos_ dA = TT co _ dA + C-- A cos @I-[ a o

From Fig.

is:

17, it is obvious that _ = O, so that the average brightness

1 f

B = A cos @ B cos _ dA _cos @
a o o

=r2 (1 - a)
!

L A
a

J' 2 cos 2 @sin@ d@ d_ + C cos _ e
e oJ

.A

(43)

A

4_ r _- = C (i -- C)

The integration is over the same contour as before (Fig. 12).

f

__ s [ (l--a) j,_B - _ cos e 12 _c (1 - C) (cos a e -- cosaO
0 o 1

) de

+ C cos _ 0° ]

(44)
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The average brightness temperature is just the temperature of a

black body, which gives the same observed brightness:

f [sec@o(l -- a) q :_
qT _ _ __ s

rr rr 12TrC (1 -- C) J (c°s3 _-- c°sS@2) d$

+ C cos @o j

(45)

For a Lambert surface this is just:

crT _ fs
- B - cos e o (46)

The integral in Eq. 45 has been evaluated for the radiation

patterns (Table I). The second term is again seen to be the same as a

Lambert surface. We have plotted the brightness temperature (Eq. 45)

1/6
in Fig. 18 along with the experimental results of (cos Oo) and a

Lambert surface of (cos Oo)4.

Several curves for the 180 ° crater with various densities are

shown in Fig. 19. It should be pointed out that a crater whose depth-to-

diameter ratio is greater than that of a hemispherical crater will give

approximately the same limb brightening since all that is visible at

the limb is the crater rim. Thus Fig. 19 is somewhat independent of

depth-to-diameter ratio and can be used to determine the relative

density of craters.

By comparing Fig. 19 with Fig. 14 one can get some idea of

the depth and density of the small lunar craters. The relative density

as determined by Fig. 19 is about 0.3. This fits the observations

that the exponent decreases as one goes toward the limb, giving greater

limb brightening than (cos @o )I/6. The 0.3 radiation pattern

in Fig. 14 is somehwat shallow, however, one can make this
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pattern considerably steeper by increasing the depth of the crater

(Fig. 13). The increased depth will have little effect on the limb

brightening curves, and will allow the radiation pattern to conform

much more closely to the observed data. The geometry of craters

deeper than hemispherical is rather difficult. The calculation

of the cylinder {Fig. 16) indicates that the depth-to-diameter ratio

for the craters cannot exceed about 1.0 because of the reversal in

curvature of the radiation patterns. Therefore, we conclude that the

relative density of small craters on the moon is about 0.3 and

the depth-to-diameter ratio is slightly greater than that for a

hemisphere. These results are for the particular idealized model we

have chosen. In interpreting the infrared data of Pettit and Nicholson,

one should realize the large amount of scatter that exists in the data.

Some of this scatter may he due to the fact that each data point

represents a different part of the lunar surface.

3.8 The Size of the Small Scale Craters

We have shown that the daytime radiation anomalies may be

caused by the presence of small craters. These craters contain rather

large temperature gradients as indicated in Fig. 25a. Up to now we

have assumed for the illuminated crater that the conduction terms in

the flux balance equations (Eqs. 22 a -- c) are negligible. However,

the existence of large temperature gradients on the surface may

cause the lateral conducted flux to be quite large. To calculate the

magnitude of such an effect consider the following.
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The temperature within the crater is completely determined
k

by the balance of flux condition, Eq. 25. The net lateral flux (f_)

can be added in as follows:

oT _ = (i -- a) fs cos _ + C fs cos @o + f_., (47)

The temperature distribution will be disturbed only when the lateral

flux becomes of the order of the solar flux (f_ _ fs ). This can be

translated into a temperature gradient because the lateral flux must

flow through the bulk material. Thus we obtain from the conductivity

relation (Eq. 21) the maximum temperature gradient that can be

maintined on the surface without disturbing the flux balance condition

as:

dT _ I i

dx k f_ k fs (48)

The solar constant used for the temperature calculations was

0.033 g cal/cm2/sec. Thermal conductivities for the Moon vary from

3 x 10 -6 for a pumice of 350/0 porosity Lo 6 x i0' s for an open cell

structure of 88% porosity (Glaser andWechsler 1965). Taking an

--5

average value of i0 , we get the following maximum temperature

gradient.

dT 1
- f = 3,300 ° K/cm (49)-_x k s

The temperature differences from center to rim for a hemispherical

crater are about I00 ° K (Fig. 25a). This means that the temperature
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distribution in the crater can be maintained down to a diameter as

small as 1 mm. This represents a lower limit because craters

smaller in diameter than 1 mm will begin to disturb the temperature

balance condition (Eq. 25). As the temperature gradients are washed

out by lateral flux, the crater will assume a constant temperature.

Such a crater with a uniform temperature distribution radiates

isotropically and cannot produce the anomalous radiation patterns

that Pettit and Nicholson observed. It has been pointed out already

that craters larger in diameter than 1 mm are shallower and their

relative density decreases so that they are much less effective in

causing the observed radiation anomalies. We therefore conclude that

the anomalous infrared radiation from the Moon is most probably due

to millimeter scale cratering and roughness.

The possibility of large temperature variations such as those

shown in Figure 25a over very small dimensions is a very interesting

result of our study. The anomalous emission from the subsolar point

is very strong evidence for the existence of these temperature

variations. We further suggest that the variations in temperature are

produced by the illumination of micrometeorite craters of millimeter

dimensions, rather than by larger craters or other objects. This

follows from the high relative density needed to explain the anomalous

infrared radiation from the Moon. Thus the picture of the lunar surface

that we obtain from interpreting the infrared data indicates that 30% of

the surface is covered with roughly hemispherical shaped craters whose

dimensions are of the order of a few millimeters.
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Nighttime and Eclipse Study of the Moon

4.1 The Thermal Anomalies

The observation of anomalous cooling in certain regions of

the lunar surface by Shorthill et al. (1960) has given rise to much

speculation about the origin of these anomalies (Fig. 20). Several

possible explanatiohs suggestec[ by Saari and Shorthill (1.963) are pre-
\ P

sented in th e Introduction. The one most generally accepted concerns

the bulk properties of a lunar surface. The point is that a denser material

will have a larger thermal inertia and hence a longer cooling time

during a lunar eclipse. Thus one interpretation is that the material

in the region of a hot spot is denser than the surrounding region.

A variation of this idea is based on a two-layer model for the surface

in which a decrease in the thickness of the overlying dust layer produces

a surface that cools more slowly. In both these models the surface

itself is assumed to be flat.

Another line of reasoning attributes the anomalous cooling to

surface roughness (Winter 1965 and Bastin 1965). In this model a

region of rough surface is constructed on a uniform density material.

The slots or grooves of the roughness model cause the surface to cool

less rapidly due to the "excavation" of heat from deeper material by

radiation conductivity. Thus the effective thermal inertia of the

surface is increased by the presence of roughness.

In SectionII we have proposed as a possible alternative to

the previous suggestions that the thermal anomalies are a region

densely covered with very deep spherical craters. The anomalies

that were observed by Saari and Shorthill (1963) are associated
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almost entirely with bright-rayed craters. There is evidence that

the rays are made up of many small secondary craters (Rackham

1965). We therefore propose that the anomaly is caused by numerous

deep craters located in and around the much larger parent crater

and that these probably are produced by debris from the initial meteor

impact. This would help to explain the fact that the anomalies are

larger generally in diameter than the associated crater.

These deep craters would provide excavation of heat from the

deeper layers similar to the previous models. As in the study of the

illuminated Moon, the effects of reradiation on the temperature of the

crater are considered here; and, in addition, the flux conducted up

up from beneath the surface is taken into account because it determines

the rate of cooling of the crater. This is accomplished by using Eqs.

22 (a -- h) in a numerical diffusion calculation. The method

developed by Wesselink (1948) to study the cooling of a smooth, flat

surface can be adapted easily to a lunar crater.

4. Z Numerical Solution for the Cooling of a Crater

The Wesselink procedure is a numerical technique for solving

a diffusion problem. Mathematically this can be stated as a boundary

value problem where the differential equation is:

d 2 T 1 dT k
= 0 K- (50)- 0t pc

This diffusion equation can be transformed into a finite difference

equation as follows:
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T (t,_,+ a_) - ZT(t,_.)+ T(t,z--Az)
_z)_

_ i T (t+ht, z} -- T (t,z} = 0
K At

(51)

It is convenient to select the At and Az increments such that

(Az) _ : 2 KAt (52)

Substituting Eq. 52 into Eq. 51 and multiplying by K At, the T (t,

terms cancel leaving:

z)

T (t +At, z) = ½ ( T (t, z +hz) + T (t, z -- Az) ) (53)

Thus the diffusion equation simply gives the temperature at time

t + At as the average of two temperatures at time t.

Starting at some initial temperature distribution one can then

theoretically obtain the complete temperature history at any depth,

provided that the boundary conditions are supplied. Since one wants to

to terminate the diffusion process at a finite depth, the boundary condition

at NA z is chosen as a constant temperature equal to the average lunar

temperatdre. Because of the exponentially damped behavior of the

diffusion, this is not a serious error for an NAz of about one thermal

wavelength. The thermal wavelength for a sinuisoidally heated boundary

is just:

z_ (54)

Using this with Eq. 52 gives the z-increment_ in thermal wavelengths as:
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l

-7- z_ \_ _ o. 4 (5s)

For the crater problem we chose to split the lunar cycle (29.5 days)

into i00 increments, which gives a z-increment of:

Az = 0.04 k

At = 0.01 P

(56)

An array of 25 z-increments by 500 increments in time was chosen

(Fig. 21) because it allowed the crater to go through 5 lunation cycles.

It was discovered, however, that 2 cycles were sufficient for convergence

of the surface temperature when started at a constant temperature at

all depths.

The calculation of the cooling of a lunar crater begins with the

computation of the average coolirTg. The 5oundarycondition at the surface

(z = 0) is a flux balance and, as such, is a gradient condition on the

temperature (Eq. 22f)

m

f- = k d T A T (57)c _ =k a--V

which, in terms of the thermal wavelength, is:

_- _ k A T Az - 0 04 (58)
c k _ 0--T 0.04 "
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Using Eq. 54 and the definition of K

1 l i__

_- = (kpc) _ w]g /XT = (kpc) 2 AT

c Zn¢:2 0.04 (4np) _ 0. 0----4
(59)

and combining this with Eq. ZZb, the non-linear boundary condition

for the average cooling of the crater is:

o-T-_ (0, t) : f _ (coswt + Icoswtl )
S

+

A !
c 50 (k pc) 2

3-

Aa (4_ P) g
_T(½ Az, t) -- T (0, t) j

(60)

where w t = O . The solar flux term has been modified so that it
o

automatically becomes Eq. 2Zd for the dark region. An extra factor of

2 appears in the second term due to the half increment in z that is used

to improve accuracy. In effect, the whole temperature array is shifted

! increment toward the surface making T(-- ½ h z,t) ½ increment above

the surface.

In order to solve the fourth-order boundary condition (Eq. 60)

the approximation must be made that:

_" (0, t) = (T (0, t) h4/ (61)

Using the temperature profiles that are obtained during the lunar night,

it is shown in Appendix VII that such an approximation causes an error

of less than 1U K in the final temperatures. This error is small

considering the accuracy of tSe:numerical procedure that was used to

calculate the surface temperature was 1 o K.
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The average cooling of the crater now can be obtained using

Eqs. 53 and 60 on the computer (Fig. 22). The procedure consists

basically of three steps. First, the temperature at time t + At and

depth z is given by Eq. 53 as the average of the two temperatures

located diagonally above it in the array. Since all of the temperatures in

the previous row are known, Eq. 53 gives all of the temperatures in the

next row, with the exception of two located at the boundary of the array.

The right boundary was chosen as a constant temperature. Second,

T (0, t) is obtained numerically from the fourth-order boundary

condition, (Eq. 60). Finally, the missing term in the array is obtained

by assuming a linear slope intemperature between increments as follows

T-(--½5z, t) = 2T (0, t) -- T (½/Xz,t) (62)

giving the temperature at the left boundary of the array. This process

is repeated, each time filling up a row Of the array and, in addition,

incrementing the solar flux by I/I00 of its period.

Using the procedure outlined here it is possible to determine

completely the temperature of any point in the crater for the entire

lunation period. _ We b_ave demonstrated in detail how the average lunation

hoollng has beerf determined. A completely analogous method

is used to determine the history of a point in the crater using

Eq. 22 (a, c, and e). Eqs. 22a and 22c become_ransformed in the same

way as Eq. 60, where the angle of incidence is _ = _t +

(Fig. 8a):
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oT _ (0, t)

+

(I - a) f cos (wt+u) + C o-T--T(0, t)
s

l

.30 (kp c) "_ (
1_ \T (_A z,

(4_P) o
t) - T (0,

!

_T _ (0, t) C _'-T'_r-¢0, t) + 50 (k ',c) _ (= ' - T (_A
(4 rr P) e

t) ) illuminated Region

z_ t)

(63)

T (0, +) ) Dark or shadowed region

The con_bination of Eqs. 63 and 53 are used in a second numerical

diffusion to solve for the temperature of a point. Thus by making

N + 1 diffusion calculations one can obtain the thermal history of a

lunar crater for N points within the crater.

The original equations for describing the temperature distribution

in a crater have been reduced to nurnericaI form to be used in

a computer solution for the cooling of a crater. The forms of the

equations to be used on the computer are:

f

= ---_(cos®t + Ic°s_t I)Y-_ (o, t) z

T (t + At, z)

+
A .L
c 50 (kpc)_- z--

A <T

= ½<T(t, z+Az)+T

(½zx_., t)- Y (o, t))

(t, z --Az))

(64)

(a)

(b)

Illuminated Region:

o T4(O, t) = (1 -- a) f cos (at+u) + C(TT "4 (0, t)
S



+ 5oIkp ( T I
(4TT P)_

Dark or Shadowed Region:

1

oT 4 (0, t) = C cyT--_ (0, t) + 50 _kpc)S_

(4._ P) e

t)- T (0, t) _
/

(T (_a_., t)- T (O,ti)

t

T (t+ht, z) = ½\T (t, z+Az) + T (t, z -- A z) I
\ J
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(64)

(c)

(d)

(e)

The average cooling array (Fig. 21) is calculated first, using the

radiation balance equation (Eq. 64'a) as the boundary condition for the

left edge of the array. The top and right-hand boundaries of the

array are set equal to the average temperature of the Moon (230 ° K).

The diffusion equation is reduced to a numerical temperature

average (Eq. 64b) , which is used to obtain the temperature inside

the boundary of the array. After the average cooling has been

determined, the temperature history of a point within the crater

can be evaluated. The shadow region has been derived in Appendix III

and requires the direct solar flux to be zero when:

wt < -- 90 + y/4 -- _/2 (e < o )
o a

mt> 90 -- y/4 -- _/2 (O° @b)

(65)

This condition is then used to tell the computer when to switch

from Eq. 64c to Eq. 64d. The reradiation term (_--4) has been

calculated already; therefore, the computer proceeds to determine the

temperature variation of a point in the same manner that it determined

the average cooling of the crater.
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4.3 The Change in Effective Thermal Inertia

The cooling of a lunar crater during an eclipse or lunation

can be determined using the theory, we have developed. Consideration

has been given to the effect of the flux conducted between the surface

,and the deeper layersas it is no longer negligible, as in the daytime case.

The method used for this was developed by Wesselink (1948) for

lunation and eclipse studies. Eq. 64a determines the average

cooling of the crater and must be calculated before the temperature

distribution within the crater can be evaluated using Eq. 64c. The

average cooling of the crater is similar to that of a flat surface,

except for the factor A /A , which appears in the conduction term,
C a

and this increases the thermal inertia of the flat surface by reducing

the amount of flux that the deeper layers of the surface have to provide.

Hence, the heat stored in the layers will last longer and cause the

surface to cool more slowly. This can be seen in the equations,

since the Ac/A factor multiplies the thermal inertia in Eq. 64a.a

Therefore, the average cooling of the crater is slowed by:

1 A 1
c (66)

2 - (k p c)_(kp C)effe ctive A
a

4.4 The Eclipse Illumination Function

Until now, obtaining the lunation cooling curves for the crater

has been the primary emphasis. The techniques developed here, however,

apply equally well to the eclipse situation. The time scale must be
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expanded since an eclipse on the lunar surface takes place in about 5

hours. The path of the Sun behind the Earth is taken along an Earth

diameter. During the eclipse the angle of the solar illumination is

assumed to be stationary and the initial temperatures in the crater

can be obtained directly from Eq. 25a. To evaluate the illumination

function that applies it is assumed that the Sun is a uniformly bright

disk (no limb darkening) and that the ratio of the diameter of the Earth

to the diameter of the Sun as seen from the Moon is 3.58. The illumina-

tion then is just proportional to the amount of the solar disc that is

visible around the Earth. In Appendix VIII this is shown to be

f = f [I 1 (_s -- sin 4s) (3.58)ee s 2_ 217 (_e -- sin 4e) ]

where

sin __s = 3.58 sin --9-e
2 2

s 1 -- (3.58) 2 + 4D 2
COS -- =

2 4D

(67)

(68)

The apparent motion of the Sun and the Earth as seen from the

Moon is such that an observer sees the Earth as fixed in the sky and the

Sun as moving at 12.2°/day, returning to the same position in the sky

every 29.5 days (708 hours). This motion of 12. 2O/day will cause the

distance between the centers of the disks of the Sun and the Earth

(D in Eq. 68) to change at the rate of 0. 954 solar diameters/hour.

Thus the full eclipse takes place in 4.8 hours (4.58/0.954),

assuming that the Earth passes directly in front of the Sun.



4.5 Numerical Solution for an Eclipse

The procedure for calculating the variation in temperature

during an eclipse is the same as that for a lunation except that

the illumination function (Eq. 67) is used in place of the cosine

variation of solar flux. Hence Eqs. 22 a and 22b become:

86

OT _ = (1 -- a) f cos _ + Cc_-+f
e c

(69)

o _-_ = f cos e
e o

A
+ --i-c f

A c
a

(70)

As far as the variations in cos _ and cos @ are concerned,
o

can be assumed to be stationary during the eclipse.

the Sun

The time scale was chosen to give about 500 intervals during

the eclipse. A value of At equal to 1/I00 of an hour gives a

z-increment of (Eq. 55):

Az = 1.5 x I0--3_

h t = 1.41 x 10--s p = 0.01 hours

(71)

A temperature array of 25 x 500 was used and the initial temperature

(first row) was given a slope equal to the lunation gradient. For

sh_nplicity we assumed the Sun to be directly overhead, i.e., the

crater is located at the sub-solar point. The resulting non-linear

boundary condition for the computer calculation is for the average

cooling
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A l

_T-t(0, t) = f (t) + c 1,330 (kpc} ig (_
e _-- x . (_Az, t)

a (4 _ p)2

- T (0, t) )
(72)

The Nun is at the zenith (@ = 0) so that we obtain the temperature
o

for a point an angle c_away from the flat surface normal as (, = ff+ @o):

tIT 4 (0, t) = (1 -- a) f (t) cos c_ + C _T-_(0, t)
e

+

!
1,330 (kpc) _

.1.

(4_P) _
(T (½ Az, t) --T (O,t))

(73)

Eqs. 72 and 73 together withEqs. 64b and 64e are used to describe

completely the eclipse cooling of a crater. The procedure has been

shown in detail already for the average lunation cooling.

In both the lunation and eclipse the average cooling has

been modified by an increase in the effective thermal inertia of

A /A , which appears in Eqs. 64a and 72. Thus a surface covered
c a

with a sufficient relative density of small, deep craters will be a

thermal anomally during an eclipse or during the lunar night. The

minimum size limit for the diameter of such craters is determined

by the depth of the thermal wave (Fig. 23). In effect the crater

can only excavate heat from the deeper layers if its depth is larger

than the thermal disturbance. The depth of the thermal disturbance

is about 10 z-increments and so the resulting depths are:

d = 0.4 k lunation

d = 0.015 _ eclipse

(74)
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DEPTHOF THERMAL
LARGE ANOMALY DISTURBANCE

DEPTH OF THERMAL

SMALL ANOMALY DISTURBANCE

FIGURE 25

EFFECT OF CRATER DIAMETER
.ON THERMAL ANOMALY

\
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Using a thermal wavelength of i00 cm, the minimum depth required

for a crater to affect the thermal inertia becomes 1.5 cm for an

eclipse and 40 cm for a lunation. If the craters are hemispherical,

this gives a minimum diameter of 3 cm. Hence craters of the order

of a few centimeters in diameter can significantly affect the cooling

of the lunar surface during an eclipse.

4.6 Lunation and Eclipse Cooling Curves

The method we have developed for treating the cooling of a

lunar crater is quite general and depends on very few assumptions.

The programs were run on an IBM 7094 and required only about

I0 seconds actual computing time for a 5-cycle lunation. To display

the cooling of a crater, nine points were chosen within the crater

on the cross section containing the Sun's path. This required ten

lunation calculations, one for the average cooling and one for each

point. The result of the calculations for a 180 ° crater are shown

in Figs. 24 and 25.

The plot of the thermal history of several points (Fig. 24)

is shown to illustrate a typical temperature variation during a

lunation. Note that the reradiation effect maintains all points in the

crater at the same level above the surrounding area at night.

The interchange of radiation brings the crater to an equilibrium and

produces a 15 ° Kto 20 o l< anomaly. By looking at a cross-section

of the data at a fixed time we have plotted profiles of the crater

temperature for both day and night (Figs. 25a and 25b). The daytime

temperature profiles show a large variation due to the geometry of

the surface. The large temperature variations are important in the

J
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radiation patterns that we discussed in Section 3. The nighttime

cooling profiles show the tilt due to the geometry at sunset

slowly coming to an equilibrium by radiation interchange. The

average cooling of the crater is indicated for each profile. The

fact that the average cooling temperature is equal to the actual

crater temperature at dawn is an important check on the theory we

have developed.

In a similar way the temperatures in the eclipse cooling

profile (Fig. 25c) show some convergence toward an equilibrium

value. The process is not as complete as in the lunation case due

to the shorter time scale involved. The anomaly produced is about

30 ° I_ito 40°K above the surrounding area, and it remains relatively

constant throughout the eclipse. Hence the reradiation and

excavation of heat are even more pronounced during an eclipse.

We have emphasized the 1800 (hemispherical) crater

since it produces the largest anomalies that can be modeled with a

spherical geometry. Shallower craters, which produce smaller

hut not insignificant anomalies, are shown in Figs. Z6 and 27.

These craters take longer to come to equilibrium due to the lower

level of reradiation involved.

It is obvious that deeper structures can be modeled with an

elliptical or cylindrical geometry. However, the resulting integral

equations needed to describe the reradiation flux will be much more

difficult to solve (Eq. 36). Following the results obtained here with

respect to the increase of thermal inertia (Eq. 66), it seems safe

to saythat the ratio of crater surface area to aperture or opening

area gives a reasonable approximation to the average cooling.
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Hence a hemispherical crater will double the effective thermal

inertia of the surface; a cylinder with the same diameter-to-depth

ratio will triple the effective thermal inertia; a structure consisting

of a cylinder with a hemispherical bottom and a diameter to depth

ratio of one will multiply the effective thermal inertia by a factor

of four and so on. As a result of these consider,_tions we have

plotted a set of average lunation cooling curves for a surface

covered with structures of various depth-to-diameter ratios, (Fig. Z8a).

The craters are spherical for the 60 ° , IZ0 °, and 180 ° curves and

become cylindrical with hemispherical bottoms for a depth-to-

diameter ratio greater than_. These curves represent a surface

completely covered with craters or a relative density of i. 0.

To show the effect of relative crater density on the cooling

curves, we have calculated what an observer would see looking at

a surface composed of a certain number of hemispherical craters

and a certain amount of flat area. The flat area will cool more

rapidly than the craters producing a surface that is a composite

of two different temperatures. The effective brightness temperature

for such a surface can be calculated by using an integral of the Planck

law from i0 to 12 microns to express the radiation flux. This is

necessary as the observations of Shorthill and Saari have been made

in this region of the spectrum. We then use this function (W) to find

the amount of flux radiated by each of the two components of the

surface and weight these by the respective densities. The effective

brightness temperature for the surface is the temperature of a flat

surface that would produce an equivalent amount of flux. This can

be expressed as follows:



where:

b =

T B =

T =
c

Tf =

W( ) =

m

W (TB) = b W (Tc) + (1 --b) W (Tf)

relative density of craters

effective br ightne ss tempe r atur e

average crater temperature

flat area temperature

integral of the Plancklaw (i0 -- 20_)

102

(75)

Thus the effective brightness temperature is obtained from the flux

by inverting the integral of the Planck law, which can be done

numerically on the computer. In Fig. 28b cooling curves for the

lunar night are shown. These curves were cal,_:ulated by applying

Eq. 75 to the temperatures indicated in Fig. 24. The parameter on

the curves is the density of hemispherical craters, which affects

cooling in a manner similar to change in depth.

The calculation procedure for brightness temperature of an

eclipse is identical; the effects of crater depth and density are shown

in Fig. 29. Note that the curves in Figs. 29a and 29b are also quite

similar, making it possible to perform a trade-off between depth-to-

diameter ratio and relative crater density and obtain the same

cooling. Thus a surface covered with a large number of shallow

craters will cool in the same manner as a surface covered with a

small number of deep craters; this is limited, however, in that heat

excavation becomes inefficient in very deep craters. The limiting case

of an infinitely deep crater has been calculated by Winter (1965).
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The thermal anomalies that have been observed are

generally in the range of 10 ° K to 30 ° K for an eclipse with a high

of 50 ° K reported for Tycho (Saari and Shorthill, 1965). Lunation

anomalies tend to be smaller, of the order of 10 u K to 20 ° K, due

to the gradual decrease in solar energy and the longer cooling time.

The results of our study indicate that such anomalous cooling can

be explained by the presence of craters whose shapes are roughly

hemispherical. Crater counts have shown that small craters are

much more numerous than large ones and also tend to have a larger

depth-to-diameter ratio. This fact leads to the possibility that very

small craters, of the order of 1 cm, may be responsible t6r

the observed hot spots. Several daytime experiments that would

determine more about the nature of these craters are suggested in

the Section IV.

107
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IV. EXPERIMENTAL .INVESTIGATION

Experiments to Detect S_nall-Scale Lunar Craterin_

1.1 The Microwave Anomaly

The large thermal anomalies associated with craters such as

Tycho and Copernicus are easily observed in the infrared. If these

hot spots are caused by denser material, instead of the cratering

suggested here, we will show that one should be able to observe a

microwave temperature anomaly. The eclipse is much too short to

provide much of a temperature variation. The lunation, however,

has a pronounced effect on the microwave temperature.

To calculate the size of the anomaly one would expect,

we consider two materials of different densities. The microwave

temperature for each is smusoidal throughout the hnation. Its

amplitude is a function of the ratio of microwave skin depth to thermal

wavelength

5 = 2_ L/k

/2k

For a sinusoidal boundary condition !_T 1 e j_ t) \ the temperature

amplitude at a depth z is given by

(76)

-- 2rr z/k
T (z) = T 1 e (77)
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The microwave temperature that will be observed for a layer at a

depth z is

-- z/L
T : T (z) e (78)

The integration of these two, including a phase effect in Eq. 77, has been

done by Piddington and Minnett (1949). The resulting variation in

microwave temperature for a homogeneous surface and substrate is:

T = T + T I cos (wt + _)
o fl + 25 + 25 2

8
Tan _ =

(i+ 8)

(79)

where T is the average surface temperature and TI is the amplitude
o

of the fundamental component. Higher harmonics are ignored.

Since the microwave losses are proportional to the density

of the material (Troitsky 196Z), we can assume that the skin depth

decreases as:

L : a'/p (80)

where c_ is a material constant. This can be combined with Eq. 76

to give

2170_
6 =

P_

Ot c w/'_-
l

/_ (kpc) _

1
8 _ (kpc) -2

(81)
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Thus, due to the fact that _, c, and w are constants, we have shown

that the skin depth-to-wavelength ratio 5 is proportional to the

reciprocal thermal inertia. Referring to Eq. 79, it can be seen that

the microwave temperature depends upon the surface fundamental

!

amplitude T l and the reciprocal thermal inertia (k p c) -2 . T l is

!

also a function of (k p c)-- 2 and it was evaluated by numerically

finding the first fourier coefficient of the surface temperature for

various values of thermal inertia. These are given in Table II along

with average temperature T and the peak sinusoidal variation of the
o

microwave temperature IT I. One must assume an initial value of

6 for the Moon and this will depend on the microwave wavelength.

In Table II, we have shown the predicted microwave temperatures for

several initial values of 5. 6i can be determined by selecting the

!

microwave temperature variation (in the row (k p c)-- 2 = l, 000) that

agrees with the observed variation (Troitsky 1965 and Sinton 1962).

At a wavelength of I. 25 cm, Piddington and Minnett (1949) measured

a peak temperature variation of 52 ° that gives a 5 of i. 6:
1

TI TI = 157OK

It, ll = = 5a°K
/1 + 26 + 28 _ I. 6. = 1.6

1

= 45 °

(8Z)

It is now possible to determine the temperature variation of

a microwave anomaly. We consider a region of the surface

corresponding to an infrared anomaly to be composed of a denser
1

material giving a (k p c)-- -g of 500. The surrounding area is assumed

3.

to have a (k p c)-- "g of 1,000. In the infrared one will observe an
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eclipse anomaly of 30 ° K and a lunation anomaly of 15 ° K. The

microwave temperature for this situation is given in Table II,

where we have chosen 6. = 1.6
1

112

T = 218 + 74 cos mt anomaly

T = 210 + 52 cos m t surrounding
area

(83)

We have plotted the microwave temperature in Fig. 30 to show the

variation in the observed temperature of the anomaly (shaded area).

The phase lag of approximately 45 ° is not shown. What one sees is

a microwave hot spot for part of the lunation cycle and a cold spot

for the remainder of the cycle. The peak temperature anomaly will

be + 30 ° K and -- 14 ° K.

The significance of this result is that an infrared anomaly

that is caused by a change in the bulk properties of the surface will

have a large variable microwave anomaly associated with it. An

anomaly produced by cratering will have a small constant microwave

anomaly due only to the shift in average temperature.

Observations of a microwave anomaly in the craters Tycho

and Copernicus were attempted at the University of California Hat

Creek Observatory. The 85-foot antenna was used at a wavelength

of i. 35 cm. The beamwidth was 4' , but unfortunately the main

lobe contained only ?5 % of the antenna pattern. The craters are

1

approximately 1 ' in diameter so that they occupy i-6 of the area

covered by the main lobe. The additional factor of 4 due to the

aperture efficiency gives the increase in antenna temperature as:
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AT

AT A = ___64 (84)

By making successive scans of the crater and then integrating, a

resolution of AT A = 0.20 K was obtained and no anomaly was

observed. Thus an upper limit for the anomaly temperature is

12.8 ° K for our measurements. It is felt that a much better upper

limit can be obtained using presently available ram-wave antennas.

Since no microwave anomalies have been reported, we are led to

conclude that the hard surface model for the thermal anomalies

is incorrect.

1.2 Radiation Patterns of Specific Areas on the Lunar Surface

The exact nature of the small-scale cratering on the lunar

surface is difficult to determine from presently available data.

Several experiments that would help to clarify the characteristics

of the anomalous infrared radiation from the Moon will be outlined.

This in turn will give a better picture of the type of surface that

causes radiation anomalies. It would be of interest to have radiation

patterns for various parts of the Moon's surface. This can be

illustrated by the study of the sub-earth point shown in Fig. 7c. In

this experiment the detector is fixed and the source is rotated. The

depth-to-diameter ratio and the relative density of craters in the

area investigated will produce a definite type of radiation curve.

In particular, the regions that show the anomalous cooling discussed

in Section 4 could be investigated in this manner. If they are produced

by deep cratering, as has been suggested here, then they will exhibit

a peculiar radiation curve. The particular type of radiation curve
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that is obtained will be similar to the radiation patterns that we

discussed in Section 3. Since the depth-to-diameter ratio of

the cratering very strongly affects the radiation patterns (Figs. 13

and 16), it may be possible to determine the depth-to-diameter

ratio and the relative density of cratering in the vicinity of a thermal

anomaly.

The experiments shown in Figs. 7b and 7c are identical in

their geometrical setup and differ only in that the source and detector

have been interchanged. There is a reciprocity between the two

experiments that can be seen by considering a particular ray that

leaves the source, is multiply scattered from the surface, and finally

arrives at the detector• If it is assumed that the scattering or

reradiation is isotropic on amicroscopic scale, this particular

ray path is reciprocal. That is, a ray starting from the detector

will undergo the same multiple scattering in reverse order and arrive

at the source. The attenuation in the path is the same in both

directions. Since geometrical optics has been assumed to be valid,

the experiment is just measuring an infinite number of these ray

paths, each of which is reciprocal. Hence the two experiments

should give identical results. The only precaution necessary is to

realize that in watching the sub-earth point (Fig. 7c) a constant

amount of area is always observed, while in observing the sub-solar

point (Fig. 7b) the amount of area observed increases as sec @
o

Therefore, the radiation pattern for a lambert surface at the sub-earth

point is cos @ , while at the sub-solar point it is unity in all directions.
o
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In performing an observation of a particular part of the lunar

surface, one should take the observed brightness variation throughout

half a lunation and multiply this by sec @ . The resulting curves
O

then can be compared with those in Figs. 13 and 16 to determine

the crater depth-to-diameter ratio. This ratio can be determined

primarily from the steepness of the curves, with a reversal in

curvature indicating very deep craters (depth/diameter > 1.0).

It would be very useful to have data on the radiation patterns of

specific areas, particularly those that have been found to be hot spots

during an eclipse (Fig. 20). Such data could be obtained easily since

the daytime brightness of the Moon is very high. The photometric

behavior of various areas of the surface has been studied already in

detail, both experimentally and theoretically (Sitinskaja and Saronov

1952, Hapke 1963). Much can be learned about the thermal anomalies

by a similar study in the infrared, which could be carried out for many

areas of the Moon. The results of such a survey, when combined with

the Pettit and Nicholson data, would provide a much better conception of

small-scale lunar cratering.

i. 3 The Slope of Radiation in the Infrared Window

The experiments that have been done in the infrared generally

have measured the total flux coming from an area of the Moon's surface

in the 8 -- 14 _ telluric water vapor window. It has been assumed that

the area emits as a constant-temperature blackbody. As has been shown

here, the small craters contain large temperature variations (Fig. 25a)

and therefore do not emit as a blackbody. Such craters have a composite

radiation curve, which is non-isothermal. One means of determining the
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nature of the Moon's surface is to measure the spectrum, as well as

the magnitude of the emission in the water vapor window. Such a

measurement could be made most simply by taking the ratio of the

flux in the 12 -- 14_ interval to the flux in the 8 -- i0 _interval.

This ratio is equivalent to the normalized slope of the lunar emission

in the 8 -- 14 _ window. A slope measurement would not be difficult

to make with presently available infrared filters, and because a ratio

is being determined, it should be relatively immune to experimental

errors. This type of experiment would be very valuable in determining

further the types of small craters and roughness that characterize the

lunar surface.

In order to calculate the ratios that one would theoretically

expect to obtain in an infrared slope experiment, the Planck law

integration, described in Section 4.6, was used. This procedure

integrates over constant temperature strips in the crater to obtain the

8 -- I0 _ or 12 -- 14 _ flux that is radiated in the direction of the

observer, which then can be applied to a particular experiment. Two

experiments will be considered that were performed by Pettit and

Nicholson (Figs. 7a and 7b) and the results of a slope measurement

for each will be presented.

To illustrate the data one would expect, we have chosen

two extreme cases- a Moon that is a smooth Lambert sphere

and one that is covered completely with hemispherical craters.

Presumably, the actual Moon is somewhere between these two extremes.

In the scan across the full Moon (Fig. 7a) Pettit and Nicholson

2

observed a (cos eo)3 variation of brightness instead of a cos 8o
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variation, which would be expected for a smooth Moon. We have

shown that this probably is due to the presence of small-scale

cratering and roughness.

The slope of the infrared radiation as one measures across

to the limb is shown in Fig. 31. Note that there is very little change

in slope from center to limb for a crateredMoon. However, the

smooth Moon curve is very steep, producing alarge difference in

slope at the limb. This experiment, therefore, is very sensitive

to the amount of cratering and roughness and should provide a very

good indication of the small-scale lunar surface. The two surface

models for the radiation patterns shown in Fig. 3Z differ less. In

this experiment the slope for a smooth Moon is constant for all angles,

while the slope for the cratered Moon decreases slightly toward the

limb. It will be more difficult, therefore, to distinguish roughness

in a slope measurement of the sub-solar point (Fig. 7b). Thus the

measurement of infrared slope for the full Moon will give the most

significant data on the small-scale cratering. Both this experiment

and that suggested in Section 1. Z would add a great deal to our knowledge

of the small-scale lunar surface.
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V. DISCUSSION

Out of the many interpretations of visual, infrared, and

microwave data on the Moon have come a number of conflicting

models for the lunar surface. Some of these conflicts will only

be settled by a manned landing on the surface. We have attempted

to resolve some of the problems by showing the importance of

small-scale cratering and roughness in the interpretation of infra-

red measurements. In addition, several experiments have been

suggested that would allow us to describe in greater detail the

extent and type of cratering that exist in various regions of the

lunar surface. From examining the data of Pettit and Nicholson,

we have concluded that at the scale of a few millimeters, BO %

of the Moon's surface is covered with craters of approximately

hemispherical shape (depth/diameter _ ½). These craters, which

probably have been produced by micrometeorites, are much deeper

(relative to the diameter) than any that have been studied by Baldwin

(Fig. Z). It is therefore important that additional infrared measure-

ments be made to find out more information about these millimeter

scale craters.

In order to explain the infrared data of Pettit and

Nicholson, we have used a model that consists of spherical craters

in a flat terrain. This model is similar to some of those that have

been proposed to explain the photometric data, except that multiple

scattering (or reradiation) has been considered as well as shadow-

ing (Van Diggelen 1960, Bennet 1938). However; the model is

quite di/ferent from thoae of other interpretations of the infrared
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data. Pettit and Nicholson suggested a surface composed of spheres,

but they only calculated the effect of these on the full moon limb

darkening. Gear and Bastin (1962) proposed rectangular corrugations,

but did not calculate any radiation curves. Their model could be

considered to be equivalent to cylinders with a depth-to-diameter

ratio of i. 0. As we have shown, the radiation patterns for such a

cylindrical model do not correspond to the subsolar point data of

Pettit and Nicholson. Winter (1965) proposed infinitely deep cracks,

primarily as an _.xplanation for the eclipse thermal anomalies. Again,

such a roughness model does not explain the illuminated infrared

radiation pattern of the subsolar point.

It is important to realize that practically any roughness model

with a suitable adjustment of parameters will give the infrared limb

darkening of (cos @)5 observed by Pettit and Nicholson. The

characteristic that can be used to distinguish between the various

models for surface roughness is the radiation pattern. In order to

determine the correct surface model, this must be compared with

the subsolar point observations of Pettit and Nicholson. The radiation

pattern is very sensitive to a change in the depth-to-diameter ratio

of the roughness (Fig. 16). Hence, it should give a very good

indication of the depth-to-diameter or average slope of the small-

scale roughness. Due to the change in slope from center to rim,

large temperature variations are produced in the illuminated

crater. These temperature variations are directly related to the

radiation patterns. If the crater is small enough, the temperature

variations are reduced by surface conduction, and the radiation

pattern becomes isotropic. Hence an anomalous radiation pattern
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implies the existence of large temperature variations. The lower

limit of size for the crater is obtained by calculating the maximum

permissible temperature gradient. The scale of the cratering that

produces the radiation patterns can then be obtained directly from

this calculation. This follows from the observation that the depth-to-

diameter ratio increases in the smaller craters. The resulting scale is

of the order of a millimeter. It should be emphasized that the depth-to-

diameter ratio for this millimeter scale cratering can be uniquely

determined from the radiation patterns. In addition, the density is

given by the full moon limb darkening curve. We thus have a fairly

complete picture of the millimeter scale roughness.

Data from observations at visible and microwave wavelengths

have also been interpreted as being due to surface roughness. Work

by Hapke (1963) and others have shown that very complex structures

are required to produce the lunar photometric function. Such

structures have very deep and intricate passages at the scale of a

few microns. At the other end of the spectrum, Evans and

Pettengill(1963) and Rea et al. (1964) have found average slopes from

radar returns to be about 1:5 for wavelengths of 3.6 cm and 68 cm.

Combining these with our interpretation of infrared data, we can

construct a table that showsthat the Moon's surface appaars to have an

abrupt increase in roughness as the scale decreases below a few

centimeters.
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ROUGHNESS SCALE DEPTH/DIAME T ER

l0 -- 100 cm l:10

(depth/diameter_ av. slope/Z)

1 mm 1:2

l0 -- 100 microns _ 5:1
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Photographs from the Surveyor satellite show a fairly rough surface on

a millimeter scale, particularly when illuminated by the setting Sun.

However, individual craters are difficult to distinguish and the resolu-

tion is at best a millimeter. Hence, we can conclude that our model

fits in with most evidence on the surface roughness of the Moon, although

the photographic evidence is somewhat vague. Consequently, additional

infrared data would be particularly important in further refining our

results and in determining the variation in roughness across the lunar

surface.

There is some difficulty in constructing a model that is both

physically realistic and capable of a mathematical solution. We have

tried to present some of the techniques by which a model of the surface

characteristics can be obtained from the infrared data. Since the

relationship between a particular infrared measurement and the result-

ing surface model is not completely unique it is important to have data

from several different types of experiments. This is particularly

true of more elaborate representations of the lunar surface. The

model used by Winter (1965) has one parameter (the density, or number

of cracks), while our model has two parameters in order to give an
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idea of the depth-to-diameter ratio as well as the density of the

roughness. We then use the two sets of data obtained by Pettit

and Nicholson to determine these parameters. As an alternative

set of parameters, we might have chosen the mean and variance

of a gaussian distribution of depth-to-diameter ratio for the crater.

In either case, one encounters the problem of making a model for

those craters that are deeper than a hemisphere. A cylinder model

has been discussed. A cone, paraboloid, _r ellipsoid model could

have been tried, but the mathematics of reradiation would have

been difficult. For the shallower craters, a sphere is the best

choice from the mathematical standpoint, and it represents a good

physical approximation.

A very significant prediction of our study of cratering is

the existence of large temperature variations in small craters.

Pettit and Nicholson measured the subsolar point and found that

the "temperature" that is observed decreases for very large observing

angles. We have shown that this can be explained by the presence of

hemispherical craters, which cause the infrared emission to be

maximum in the direction of illumination. Such anomalous radiation

patterns are produced by a temperature distribution that decreases

toward the rim. Under normal illumination the distribution is

symmetric with the maximum temperature at the center. The tempera-

ture variation can sometimes exceed 1000 K over a distance smaller

than I crn. Thus the individual variations cannot be observed from

the Earth, where the resolution of an area on the Moon is at best 1 kin.

However, the variations will have an effect on the observed temperature

of an area, as is the case with the subsolar point, h is very important



126

to realize that these temperature variations are real and that the

observed temperature is a rough average for the surface. It is

actually an equivalent brightness temperature, which would give the

the same observed flux in the 10 -- 12 _ window. This brightness

temperature always will be somewhat higher than the average

temperature. Thus one should be very careful about what is meant

by temperature with respect to infrared observations of the Moon.

Shorthill and Saari have observed a large number of thermal

anomalies during the lunar eclipse. Very little is known about

these areas except that generally they are associated with features

that are bright at full moon. Some of the thermal anomalies,

such as Tycho, also are radar anomalies. This implies that the

area in and around the crater Tycho must be either much rougher

or much denser than other part_ of the Moon. None of the other

suggestions that have been made explain the fact that Tycho is both

a radar anomaly and a thermal anomaly. However, there is one

difficulty in that the radar brightness contours for Tycho do not

match the infrared eclipse contours (Shorthill and Saari 1965). It

may be that several of the mechanisms suggested are responsible

for producing the thermal anomalies. The anomaly associated with

Tycho has been observed to be 50 ° Kwarmer than the surrounding

area. If the anomaly is caused by roughness, we have shown that

the structures needed to produce such a large anomaly would have

to have a depth/diameter >1.0, even with a relative crater density

of 1.0. This degree of roughness should be very apparent in an

infrared study of Tycho under various angles of illumination. As

we have indicated, the depth-to-diameter ratio of the roughness is
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related directly to the anomalous radiation patterns that the area

produces. Until observations are made of _he radiation pattern

in the region of an anomaly, it is difficult to do more than speculate

about the origin of thermal anomalies. Shorthill and Saari have

begun such a study by publishing maps of the Moon at a few different

phases.

There are sew ral areas of lunar investigation in which it

is possible to apply our cratering mode]. Most of the lunar models

used to explain the radar backscattering have been statistical models.

It would be interesting to see how well the radar data could be fit with a

specific model, such as the one that we used to interpret the infrared

data. This would require establishing a cratering model at a scale

of 10 -- 100 cm, with one or two parameters to be determined. The

craters probably would be relatively shallow, and the individual

surface elements would be mostly specular in their reflection

characteristics, with a small diffuse component. It might be possible

to obtain the depth/diameter ratio for such a model. However, one of

the difficulties is that the radar geometry is equivalent to the full

moon experiment of Pettit and Nicholson in that the source and

detector are located at the same angle with respect to the surface.

In the infrared case there were a number of models that were capable

of predicting the infrared limb darkening. A bistatic radar experiment

using an orbiting satellite would therefore be very useful in sorting

outthe various radar models. Another application is in interpreting

the passive microwave observations. It would be interesting to

calculate the effect of crater ing on the microwave temperature

variation. This would mean considering the very inhomogenous
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surface temperature distribution that excites the thermal wave,

as well as the effect of the roughness on the microwave emission.

The lunation variation, as well as the pole darkening, could be

studied.

A cratering model can also be used to account for the visual

observations. As one goes to very small-scale roughness, the

structures become very deep and intricate. Studies of the lunar

photometric function have shown that is is probably the result of

shadowing of light in a very complex three-dimensional structure.

If the surface albedo of the individual reflecting elements is not too

low, one would also expect some multiple scattering within the

structure. In one possible model for such scattering, one would

set up micron scale cylinders that have a large depth-to-diameter ratio

such as we have done for studying the infrared radiation. If we make

the assumption that the scattering from each element of surface in

the cylinder is diffuse (isotropic,approximation), the equations giving

the infrared brightness in a particular direction are the same

equations one would derive for the visual brightness (Eq. 35 and

Eq. VI-20). Hence the optical brightness will be given by the radiation

patterns we have calculated (Fig. 16), since the same assumption is

made about both reradiation and diffuse reflection from a surface

element, namely that they obey the Lambert cosine law. Therefore,

the curves in Figure 16 can be used to determine approximately the

depth-to-diameter ratio of the microscopic roughness. Comparing

these curves with typical photometric data show the depth to diameter

to be at least 2.0 (for a relative density of I. 0). Experimental studies

of laboratory prepared surfaces indicate very deep geometries, so
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that the depth is more likely to be 5 or 10 times the diameter.

Even deeper structures are responsible for the very sharp back-

scattering spike associated with the bright-rayed craters (Oetking

1966).

In making a study of the lunar surface, we have made much

use of the early infrared data of Pettit and Nicholson (1930). Their

results were obtained prior to 1930 when they made extensive

observations of both the illuminated Moon and a lunar eclipse on

June 14, 1927. Since that time there have been extensive studies

of the dark Moon, both during an eclipse (Saari and Shorthill 1963)

and during the lunar night (Murray and Wildey 1964). Except for

some observations of Sinton (1962), very little has been done to

continue the work of Pettit and Nicholson on the illuminated Moon,

even though this would be relatively easy to Uo using present infrared

astronomy equipment. Possibly additional studies have not been done

because of a lack of understanding of the importance of these

experiments in determining the nature of the small-scale lunar

surface. Pettit and Nicholson only looked at two out of an infinite

number of arrangements of the Sun, Earth, and Moon. Infrared

measurements should be made for a number of different geometric

arrangements. There are also difficulties with the fact that the data

correspond to the average characteristics of the Moon because each

point was taken from a different part of the surface. It would be

extremely interesting to compare the amount of small-scale

cratering in various parts of the Moon, particularly in the region

of thermal anomalies. One experiment has already been suggested

that should give some indication of the depth-to-diameter ratio for a
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specific area. Many similar experiments can be devised to investigate

the radiation patterns and spectrum of emission from the surface,

particularly when satellites become available for infrared measure-

ments.

The small-scale roughness of the lunar surface apparently

increases very rapidly in the centimeter and millimeter range. We

have attempted to give some idea of the nature of this small-scale

roughness by interpreting the infrared observations as being the

result of micrometeorite craters of millimeter dimensions. These

craters contain very large temperature variations when they are

illuminated by the Sun. In addition, we have suggested that the thermal

anomalies observed by Shorthill and Saari may be caused by very

deep craters whose dimensions must be at least a few centimeters.

These would in turn explain the very strong radar echo that is re-

ceived from Tycho, if the crater dimensions are larger than a wave-

length. We have proposed several experiments that would give a

better picture of the millimeter cratering. It is hoped that these

experiments would also resolve the question of the mechanism behind

the thermal anomalies. The main problem at present is the lack of

data about the Moon. There is a need for experimental observations

that would allow us to determine uniquely the characteristics of the

small- scale lunar surface.
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APPENDIX I --. ,Effects of Albedo

The solar flux illuminating a particular element of area

dA is (Fig. 33):

incident flux = f cos _ f = solar constant (I-l)
s s

angle of incidence

a = visible albedo

Of this flux, a fraction (l-a) is absorbed and a fraction "a" is reflected.

absorbed flux = (l-a) f cos
s

reflected flux = a f cos _
S

(I-2)

Except for a small part that is conducted into the surface, all the flux

absorbed is emitted from the surface as infrared radiation. In the

infrared we assume the local surface to be an ideal black body having

a cosine dependence for the emitted radiation. The visible flux that

is reflected is also assumed to have a cosine dependence. Both of these

are called the reradiation flux, some of which will be intercepted by

another element of area dA'. The reradiation flux incident at dA'

consists of the following two parts (Fig. _3):

infrared reradiation = K (I - a) f cos _ cos 4 K = geometric factor
S

(i-3)

visible reradiation = Kaf cos
s

cos
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The amount of this flux that is absorbed at dA' is determined by

our assumption that the infrared albedo is zero and the visible

albedo is a:

infrared absorbed =

visible absorbed =

visible reflected =

K(I - a) f cos_ cos
s

(i - a) Kaf cos_ cos
s

aKaf cos qJ cos
s

_ reradiation absorbed

(I-4)

Therefore, the reradiation flux absorbed by dA' is:

reradiation absorbed = K (i - a2) f cos@ cos
S

(_-s)

Because the albedo is approximately 0. l, Eq. I-5 shows that 99% of

the reradiation flux is absorbed at a point in the crater. Hence with

little error we may assume that all of the reradiation flux is absorbed

at dA'. Note that we have not chosen a specific geometry for the crater.

The isotropic approximation for the photometric function (Fig. 3)

is very good despite the narrow back-scattering. The angular distri-

bution of power is rather wide because the amount of spherical area

increases as sin @. Hence the power is distributed fairly isotropically.
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FIG. 33. Effects of albedo

" m m m F¸ ----. m L_-

FIG. 34. Geometry of a spherical crater
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APPENDIX II -- Geometrical Relations for a Spherical Crater

For the spherical crater shown in Figure 34, the following

relationships can be stated:

x = r cos _/2 where: D = diameter of crater

D/2 = r sin v/2 d = depth of crater

r = radius of sphere

x + d = r defining crater

y = crater angle

(II-l)

From these we can obtain the depth to diameter ratio as:

d _ 1 - cos y/2

D 2 sin y/2
(II-2)

The area of the crater surface can be obtained from integrating a

spherical element of area:

A $ dA $_/2

2rr

= = J"
c 0 0

A = 2_ re (i - cos y/2)
c

r2 sin@ d_ de

(II-3)

The aperture area is:

_D 2
A - = _r 2 sin 2

a 4 ,#2 (I I-4)
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The geometrical constant in Section 111-2.2 is

C _

A
c

4_r _ - ½ (1 - cos y/2) (II-5)

The ratio of crater aperture to surface area is:

Aa _ r_r2 sin 2 y/2 _ I - cos2 y/Z

A c 2_rZ(l - cos y/2) 2 (i - cos Y/2)

_ 1 + cos y/2
2

(I 1- 6)

Note that this is just:

I
(1 - C) = 1 - ½ (1 - cos y/2)' = _ (1 + cos y/2) (1I-7)

Therefore, we have:

A
a

A
C

= l -C (i1-8)

A
C

4_ r2
= C (11-9)

In addition:

A
a

4_ r-_-

A A
a c

A 4_ r 2
c

c(1 - c) (II-lO)
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APPENDIX III -- Shadow Boundary

The angles that determine the shadowing for the cross section

of the crater we have chosen are shown in Fig. 8b. The angle @
o

is taken to be negative as the sun r_ses from the left and

positive as it sets to the right. The angles at which the sun rises

and sets for the element of area dA are @ and @b" The positiona

of dA is given by the angle _, which is positive to the right of the center

of the crater. The apex angle is the angle between the normal to dA

and the normal to the crater rim (0 or(_) ). We can now obtain the

shadowing angles from the triangles in Fig. 8b.

e •
a

apex angle = _ /2 + _ (III-l)

For any triangle the sum of the angles is 180°; hence:

_y/Z + c_ + 2 6 = 180 ° (III-2)

that @ is negative so that the sum of the angles about 0Note is
a

B I

(- @ ) + 7/2 + 4 = 180°
a

(111-3)

From Eqs. III-2 andIII-3 we have the shadowing angle @ as:
a

@ = -90 ° + 7/4 - c_/2 (III-4)
a



The derivation of @b proceeds identically, hence:

@b = 90° -y/4 - 0t/2

136

(zll-5)

Hence the direct solar flux term is zero for:

or

@ < -90 ° + y/4 _/2
o

@ > 90° - 7/4 - _/2
o

(zlz-6)
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APPENDIX IV -- j cos * cos dA

In order to perform this integral over the unshadowed region

as shown in Figs. 11 and 12, we must express the integral in terms

of the spherical coordinates of the element of area dA. From spherical

trigonometry, the angles * and _i (Fig. l la) can be expressed as:

cos _ = cos@ (iv-i)

cos , i = cos@ cose + sin@ sin@ cos(_
o o

After rotating the crater so that the observer is on the z-axis (in

Fig. llbnotethat 4 ° has been rotated by 180 ° ), we have:

cos, i = cos@ cos@ - sin@
o o sin@ cos(_ - ¢0) (iv-z)

cos 41 : cose

Substituting Eq. IV'?_ into the integral, we find:

cos 2@ sin@
; cos* cos _dA : j" _cos@ o o sin@ cos@ cos (4-4 o) j (IV-3)

The spherical element of area is

dA : r 2 sin@ dO d$ (IV-4)
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Since @ois not a function of position in the crater, we can remove

those factors that contain@ . We can also take $ = 0 for the
O o

x-axis chosen in Fig. iZ.

; cos _ cos_' dA = r 2 cos@ ;; cosec sin@ d8 de
o

- r 2 sin@
o

j sin2e cose cos_ de d_

This can now be directly integrated over e for the shadow-rim boundary

limits derived in Appendix V.

r e cos8 2_

; cos _I cos , dA : 3 _ (cos a O cos _' e ) d_
o 1 2

r 2 sin8 2_
0

3 7 (sinS @ - sins @ ) cos_ d
o 2 1

(IV - 6 )

The integrals themselves in Eq. IV-6 have been tabulated in Table I for

various crater angles and solar incidence angles.



139

APPENDIX V Shadow-Rim Integration Limits

The shadow rim contour is generated by the intersection

of an elliptical cylinder with the sphere defining the crater {Fig. 12).

The base of the elliptical cylinder is the projection of the crater rim

on the X- Y plane. The rim is tilted at an angle @o" The intersection

of the cylinder with the sphere defines two circles that together make

up the shadow-rim contour.

To evaluate the integration limits we must find the spherical

coordinates of the contour. This general shadow-rim boundary for

various depth craters can be found by solving a quadratic equation

in sin e . This can be derived by considering a crater whose angle is
$

7 and whose tilt is @0 {Fig. 11). In the case of craters less than hemi-

spherical, the contour of @s has symmetry about the X - Z plane only

and the elliptical cylinder (Fig. 12) moves off center to the left as the

observer angle e ° increases.

The equation of the elliptical base of the cylinder, and therefore

of the cylinder, is:

{x+ c) e + b-_ = re (V-l)a 2

a

b

C

r

= cos e sin7/2
o

= sin y/2

= r sin e cos 7/2
0

= radius of sphere
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In cylindrical coordinates (p, 6, z):
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(p cos _ + c) e pe sin e+ = r e
a e b e (v-z)

In spherical coordinates (r, 4, 8):

(r sin 8 cos 6 + r sin@ cos y/Z) 2
o r e sin e 8 sin e

cos e 8 ° sin e y/2 + sin e y/'2 = re
(v-3)

The intersection of this cylinder with the sphere is obtained auto-

matically since r is the radius of the sphere. Multiplying Eq. V-3

(cose8 sin e y/2)
by ore ' , we,obtain

(sin 8 cos 6 + sin 8 ° cos y/Z) e +

= sin e y/2cos e 8o

sin e 8 sin e 4 cos e 8

(V-4)

Collecting like powers of sin 8, we have

sin e @ (cos e _ + sin e 4 cos 2 @0 ) + 2 sin 8(cos 6 sin@ o cos y/Z)

+ sin e 8 cos e yl2 -- cos e 8 sin e y/2 = 0
o o

(v-5)

The coefficients of this quadratic equation in sin 8 are:

A = cos e _ + sin e4 cos e 0 = 1 -- sin e¢ sin e 8
o

= cos e 8 + cos e 4 sine@
o o



141

B = cos _ sine o cos -f/2

C = sin s e cos e y/2 -- cos 2 e sin s'f/2 = cos e _f/2 -- cose9
o o O

(v-6)

In terms of these, the roots for sin 0 are:

sinE) = ( - B i 4B_ - AC )

s A-
(v-v)

and they are evaluatedThese are the points on the contour of 0 s

numerically. The appearance of two roots in Eq. V-7 occurs when

the elliptical cylinder does not contain the origin, i.e. c > ar in

Eq. V=l. Each value of _ then gives two values of e , which are then
s

the upper and lower limits of the integral (9 and @ ) in Eq. 32. When
2 1

there is only one root to Eq. V-7, the lower limit of the integral (e)
1

is zero.
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APPENDIX VI -- The Integral Equation for a Cylindrical Crater

To make the problem easier to solve we have assumed that

the temperature across the bottom of the cylindrical crater is a

constant.
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oT b4 = fo crater bottom (VI-I)

Essentially we have ignored the effects of reradiation on the tempera-

ture of the bottom. These might provide some distribution of

temperature across the bottom, but this would have a small effect on

the resulting radiation patterns. For very deep cylinders the bottom

is only visible when the surface is observed normally. Any elevation

in temperature of the entire bottom due to re radiation effects will

simply multiply the radiation patterns by a constant factor. This

merely changes the normalization.

With the sun at zenith, the side walls of the crater receive no

direct solar flux. The element of area dA will be heated by reradiation

flux from the bottom and from other parts of the wall (Fig. 35 ). The

contribution from the bottom is just the integral over the solid angle

subtended by the area of the bottom (_). This can be seen by considering

the area dA to be surrounded by a sphere of radius z. Reradiation

flux from the bottom can be considered to be coming from that part of

the sphere contained in the solid angle _. The amount of reradiation

at dA will be the same whether the bottom or part of the sphere

is at a temperature T b.
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d_ •

/

/s '_ dk
I Of,

% /

Cross-section of cylinder at dA

FIG. 35. Cylindrical crater



Hence, the reradiation flux at dA from the bottom is

equivalent to the element of area being partially surrounded by a

black body at a temperature T b. The flux from this black body at

dA is:
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f ¢ e

fb _ 1 4 o Lx j _
= --o T cos @ df_ -

I x

cos @ sin@ dOd4 (vl-z)

The spherical coordinates of the circle defining the bottom

(@ and @ ) as seen from dA can be obtained by writing the cartesian

coordinates for the circle (Fig. 35).

Z = 'constant

(x -- 1) _ + y_ = 1 (vi-3)

which is in spherical coordinates (note @ is wrt X-axis and 4 wrt

Z-axis).

(r cos@ -- 1) _ + (r sinO sin4) _ = 1

r sin O COS 4 = Z

(VI-4)

Combining Eqs. 4, we get the spherical coordinates as:

( zcot O )a\ cos 4 -- 1 r (Z tan ¢) 2 = I

: •

co, ,(= -- COS 4 _ (COSe 4 -- Z 2 sin _4) _
i_ Z

(vI-5)
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The integral over the bottom is then:
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fo ¢

fb - 2n J_ I (cos 20 -- cos 2 O ) d$ (VI-6)
O 2 1

The upper limit of the _ integral is just the point on the circle

(X = i, Y = l), which is:

cot _ = z (VI-7)
X

Eqs. Vl-5 through -7 are then used to evaluate the reradiation flux from

the bottom of the crater at a distance z from the bottom.

The reradiation flux from other parts of the wall of the crater

is obtained by an integral similar to the one for the spherical crater

(Eq. 9, text). Taking the element of area dA as having cylindrical

coordinates (0, z) and dA _ as (4, z'), we first obtain the distance

P_ (Fig. 35). The projection of iI on a plane passing through dA

(parallel to the bottom) is:

R' = 2 sin
2 (vi-8)

!

tZ is related to R by

R e = _+ (z.'-- z)2 = 4 sin 2 _ + (z '--z) 2 (vI- 9)

Note that the two angles (0) of the surface normals with respect to 1_

are equal as in the case of the spherical crater. Taking the angle of

1_' with respect to the surface normals as @ and the angle of 1_ with
1



respect to R' as @ we have
2

cos @ = sin ¢
l 2

cos @ = R_/ R
2
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(vl-_o)

From spherical trigonometry:

2 sin e _
2

cos @ = cos @ cos @ -
i 2 R

(VI-i I)

We can now calculate the amount of reradiation flux at dA.

subtended by dA is:

dA cos @
dQ I -

R _

The brightness of dA' is

The angle

(vl-iz)

B
oT 4

(w- 13)

The reradiation flux at dA is then (Eq. 6 text)

d _' dA _ OT _
Af = B cos @ - cos e

r dA

f = f °T_ cos e @r w i_ _ dA

dA cos e dA _

R_dA

(vl- 14)
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Substituting Eq. VI-9 for R and Eq. VI-II for cos 8, we have the

reradiation from the crater walls as:

d 2_ ° T_(z ,) E 2 sin 2 4/2 -,2
r 0 _ (z -- z')_ + 4 sin _ 4/2

(vl-15)

The temperature of dA is determined by the flux balance:

d

_0 ') T_
T _ (z) = fb + fr = fb(z) + K (z, z _ (z') dz' (VI-16)

This is the integral equation for the temperature on the walls where the

kernel is :

K (z, z') : _ (z -- z + 4 sin _ d/2 J dd (VI-17)

Thus after numerically calculating the reradiation flux from the bottom

(Eqs. VI-5 through -7) we can obtain the wall temperatures by numerically

solving the integral equation (Eqs. VI- 1 6 and -1 7).

To obtain the radiation patterns we must integrate over the visible

part of the cylinder the brightness in the direction of the observer.

-- 1
B

- _cos @0 ; B cos?'dA (IV-18)

For a cylinder the angle of the observer with respect to the local surface

normal (4') is just

cos ,$' : sin @ cos 4 (VI-19)
O
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4,"

where _ is a cylindrical coordinate for the element of area.

only a function of the coordinate z, we have:
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Since T is

2 tan e d

-- ( o T_
z o
l

(vi-20)

The two integration limits are functions of the angle of the observer and

are:

cos
I

d -- z

2 cot e
o

z = d -- 2 cot@ 0 cot @o < d/2
1

(vl-21)

z = 0 cot e > d/2
1 O

These can be used in Eq. VI-20 to give the brightness of the walls.

In addition when cot e > d/2, some of the bottom of the cylinder
o

will be visible. The amount of this area is (Eq. VIII-I):

whe r e :

A b = (e -- sin e )
I l

COS

d tan @
@l _ o

Z 2

(vi-22)

The radiation pattern is then the sum of Eqs. VI-22 and VI-20 with

the appropriate normalization:

2 tan e d

: o Jo
fo_ z I

+ I (e -- sine )
17 i 1

(VI-23)
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The integrals were evaluated numerically and the results are plotted

in Fig. 16.
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While the crater is illuminated the amount of conducted flux is

negligible. Therefore, the approximation T 4 = (T)4 is only

necessary for calculating the eclipse or nighttime behavior of the

crater. The relevant boundary condition for the average cooling

is obtained from Eqs. 22d and 22f.

__ A
c_T4 - c k d___T

A dz
a

(v__-1}

where the average is over the crater surface, not z or t . Solving this

equation requires that:

T4 = (T)4 (VI I-2}

giving the equation for the average temperature as:

A
a (¥}4 = c _Y

X-- _-q- (vi_- 3)
a

q

Evaluating the reradiation flux also requires that T 4 =

Eq. 18 in the text the reradiation is:

(T)4. From

f = C_ T_ = C_(T) 4 (VII-4)
r

To show that the equality in Eq. VII-2 is justified, we consider

the first of the lunation temperature profiles shown in Fig. 25b, since

it can be considered the most extreme case. Obviously Eq. VII-Z is
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true for a constant temperature throughout the crater, which is the

last of the profiles in Fig. 25b. We will approximate the temperature

distribution by taking 10% of the crater area at 180 ° K and 90% at

140 U K, as shown in Fig. 36. The average temperature is then:

= 0. I (180 °) + 0.9 (140 °) = 144° K (vii-s)

The average fourth power of the temperature is:

T _ = 0. I (180) _ + 0.9 (140) _ = 4.5 x I0

(T_)_ = 145.7 °

(vii-6)

Thus in making the approximation in Eq. VII-2 , we have made an

error of 1.7 ° in the fourth root of the average fourth power of the

temperature. Such an error enters into the reradiation term of

Eq. 22c. It will cause less than 1 ° K error in the final temperature

determined for a point since the reradiation term is the same size as

the conduction term. Therefore, the approximation T _ = (T)_

is sufficiently valid for our calculations of crater cooling.
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FIG. 36. Temperature approximation

D

FIG. 37. Geometry of an eclipse
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APPENDIX VIII -- Eclipse Illumination Function

i

The geometry of an eclipse is shown in Fig. 37. The radius

of the earth as seen from the moon is 3.58 times the radius of the sun.

Therefore, totality lastsfora motion of the sun equal to 3.58 solar

diameters. In addition, part of the sun is obscured by the earth for

½ a diameter on either side of totality. The amount of solar disc visible

during this period can be calculated by considering the amount of

obscured area to the left and right of the dotted line in Fig. 37.

The area on the right is just the area of the pie-shaped section of

the solar disc minus the triangular area 1 -- 2 -- 3.

A = 17 r s { _ > 1 re

A = ½ks -- sin6)
X S

_S 68

cosn-sinT}

(VIII-l)

Similarly the obscured area on the left is

As = nr _ -_ -- ½ rScos-_- sin

A2 = (3"58)s2 ($e- sin$e )

(viii-z)

The two angles are related by the common side, which is shown

dotted in Figure 37

S e

x = sin -_- = 3.58 sin-_- (VIII-3)



The angle
S

can be obtained froln the law of cosines, which gives

-__t
(3.58) _ = I + R s - 2R cos Z
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s L- (3.58)2+ R
COS _

Z ZA

(VII I-4)

where the variation of 1% (in solar _°edii) i_ given by the rate of

motion of the Sun. Expressed in solar diame;er_, Eq. VIII-4 is:

cos
= k- (3. s8)= +

2 4D

4 ,9 _
(vzzz- 5)

where D changes at the rate of 0. 954 solar diameters per hour.

The amount of flux incident on the sub3olar point is the

solar constant times the fraction of area visible armmd the Earth.

The total area of the disc is _:

1
f = f -- (n -- AI -- A2)
e s

1 -- sin 4s )' -- (3.58) 2fe = fs 1 -- _-_ (4 s Z. (4e -- sin 6e) ]

(VIIZ-6)

This, together with Eqs. VIII-3 and-5,

variation in the eclipse illumination.

can be used to _btain the
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